
1

1.

Basics of

Algorithm Analysis

Time Complexity of an Algorithm

Purpose

• To estimate how long a program will run

• To estimate the largest input that can reasonably be given to

the program

• To compare the efficiency of different algorithms

• To choose an algorithm for an application

Time complexity is a function

Time for a sorting algorithm is different for sorting 10

numbers and sorting 1,000 numbers

Time complexity is a function: Specifies how the running

time depends on the size of the input.

Function mapping

 “size” 𝑛 of input

 “time” 𝑇(𝑛) executed by algorithm

5

Definition of time?

6

Definition of time?

• # of seconds Problem: machine dependent

• # lines of code executed Problem: lines of diff. complexity

• # of simple operations performed

7

Definition of time?

this is what we will use

• # of seconds Problem: machine dependent

• # lines of code executed Problem: lines of diff. complexity

• # of simple operations performed

8

Size of input instance?

Formally: Size 𝑛 is number of bits to represent instance

But we can work with anything reasonable

reasonable = within a constant factor of number of bits

Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable: #bits and #digits are always

within constant factor:

#bits = (log2 10) ⋅ #digits

 = ~3.22 ⋅ #digits

Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable

- Not reasonable: ≈ 2#bits, much bigger

Ex 2:

• # of elements = 10

11

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

Is this reasonable?

Ex 2:

• # of elements = 10

12

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

- Reasonable if each number is, say,

a 32-bit word, total number of bits is

 #bits = 32 * #elements

Time complexity is a function

Time complexity is a function: Specifies how the running time

depends on the size of the input

Function mapping

of bits 𝑛 to represent input

of basic operations 𝑇(𝑛) executed by the algorithm

14

Which input of size n?

Q: There are 2n inputs of size n. Which do we consider

for the time complexity T(n)?

Worst-case running time. Consider the instance where the

algorithm uses largest number of basic operations

• Generally captures efficiency in practice

• Pessimistic view, but hard to find better measure

Worst instance

Time complexity

We reach our final definition of time complexity:

T(n) = number of basic operations the algorithm takes over

the worst instance of bit-size n

input size n

complexity

T(n)

Example 1

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 2𝑛 + 1

• Input A of bit-size n has n entries

• ≈ 2 simple operations per step of for, +1 for “x=20”

(ignoring extra operations that make up the For)

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x

Example 2

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 5𝑛 − 99

• Input A of bit-size n has n entries

• +1 for initialization “x=1”

• … ≈ 2+1 per iterations of for in the first 50 iterations

• … ≈ 2+1+2 per iterations of for in the other (n-50) iterations

(assuming 𝑛 ≥ 50)

Func Algorithm 2(A) #A is array of bits

x=1

For i=1...len(A)

x=x+1

If x>50 then

x=x+3

End If

End For

Example 3

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32)

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per iteration of for

Point: Understand input size

Func Algorithm 3(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 print “oi”

Example 4

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32) + 1

• Worst instance: the only “10” is in the last position

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per for, +1 for Return

Point: Complexity of algo is always about the worst instance

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

Asymptotic Order of Growth

Asymptotic Order of Growth

Motivation: Determining the exact time complexity T(n) of a real

algorithm is very hard and often does not make much sense

In particular, can we say that an algorithm with complexity

T(n) = 10n

will run slower than an algorithm with complexity

T(n) = 9n?

No; for example, maybe the opertions in the first algorithm are

slightly faster then in the second

(e.g., addition vs. multiplication)

But as we will see, for large instances there is a difference

between ≈ 𝑛 and ≈ 𝑛2

(e.g., ≈ 1.000 vs ≈ 1.000.000)

Asymptotic Order of Growth

We will focus on the asymptotic order of growth of the

complexity T(n)

So T(n)=30𝑛2 + 7𝑛 + 10 will become T(n)= 𝜃 𝑛2

We just want to differentiate T(n)=

~𝑛2 vs ~n vs ~n log n vs ~2𝑛

Asymptotic Order of Growth

Actually, to compute the asymptotic order of growth of

T(n) we will compute upper and lower bounds for T(n):

Ex: T(n) grows at most (not faster) like 𝑛2

T(n) grows at least like 𝑛2

T(n) grows just like 𝑛2

25

Asymptotic Order of Growth: Upper Bounds

Upper bounds

Informal: T(n) is O(f(n)) if T(n) grows with at most the same
order of magnitude as f(n) grows:

 T(n) ≤ f(n)

T(n) is O(f(n))

~

Asymptotic Order of Growth: Upper Bounds

Upper bounds

Formal: T(n) is O(f(n)) if there exist a constant 𝑐 > 0 such
that for all 𝑛 ≥ 1 we have

 T(n)  c · f(n)

Equivalent: T(n) is O(f(n)) if there exists c > 0 such that

c
nf

nT

n


→)(

)(
lim

27

Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

O(n2) ?

O(n3) ?

O(n) ?

Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

O(n2) ? Yes

O(n3) ? Yes

O(n) ? No

Solution: To show that T(n) is O(n2) we can:

Use the first definition with c = 1000

Use limits: lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32, which is a constant

29

Asymptotic Order of Growth: Upper Bounds

Exercise 2:

T(n) = 2n+1, is it O(2n) ?

T(n) = 22n , is it O(2n) ?

30

Asymptotic Order of Growth: Upper Bounds

Exercise 2:

T(n) = 2n+1, is it O(2n) ? Yes

T(n) = 22n , is it O(2n) ? No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

2𝑛 = lim
𝑛→∞

2𝑛 = ∞ is not constant

Solution 2 (second item): To have 22n < c.2n we need c>2n. So c

is not a constant

Upper Bounds Involving log/exp

Logarithms. log a n is O(log b n) for any constants a, b > 0

Logarithms. For every constant d > 0, log n is O(nd)

Exponentials. For every constants r > 1 and d > 0, nd is O(rn)
every exponential grows faster than every polynomial

can avoid specifying the
base

log grows slower than every polynomial

Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ?

• O(𝑛1.1) ?

• O(𝑛) ?

Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ? Yes

• O(𝑛1.1) ? Yes

• O(𝑛) ? No

Solution (first item): Comparing 21*n*log n vs. n2 is the same as

comparing 21*log n vs. n, and we know log n grows slower

than n

Solution 2 (first item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = lim
𝑛→∞

21log 𝑛

𝑛
, which is at most a

constant since log n grows slower than n

Lower Bounds

Informal: T(n) is (f(n)) if T(n) grows with at least the same order

of magnitude as f(n) grows

Formal: T(n) is (f(n)) if there exist constants c > 0 such that for

all n we have T(n)  c · f(n).

Equivalent: T(n) is (f(n)) if there exist constant c>0

c
nf

nT

n


→)(

)(
lim

Tight Bounds

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n))

T(n) grows at most as fast as f(n) T(n) is O(f(n))

T(n) grows at least as fast as f(n) T(n) is Ω(f(n))

T(n) grows just like f(n) T(n) is Θ(f(n))

36

Lower and Tight Bounds

Exercise: T(n) = 32n2 + 17n + 32

Is T(n):

(n) ?

(n2) ?

(n2) ?

(n3) ?

(n) ?

(n3) ?

37

Lower and Tight Bounds

Exercise: T(n) = 32n2 + 17n + 32

Is T(n):

(n) ?

(n2) ?

(n2) ?

(n3) ?

(n) ?

(n3) ?

Lower and Tight Bounds

Exercise: T(n) = 32n2 + 17n + 32

Is T(n):

(n) ? Yes

(n2) ? Yes

(n2) ? Yes

(n3) ? No

(n) ? No

(n3) ? No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32 is constant > 0

Solution 2 (second item): To show T(n) is Ω(𝑛2) use c = 1

Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Just notice/remember 𝑇 𝑛 ≈ 2𝑛 + 1

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x

Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Input A of bit-size n has n entries, so n iterations of for

• The algorithm makes at most 10n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n operations ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x

Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Notice/remember that 𝑇 𝑛 ≈ (𝑛/32) + 1

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Worst instance: the only “10” is in the last position

• A of bit-size n has n/32 numbers (using formal definition)

• The algorithm makes at most 5n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n/32 operations (remember worst

instance) ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

43

Complexity of Algorithm vs Complexity of Problem

There are many different algorithms for solving the same problem

Showing that an algorithm is Ω(n3) does not mean that we cannot find

another algorithm that solves this problem faster, say in O(𝑛2)

Exercises

Solucao: O algoritmo é Θ(𝑛 log 𝑛)

Exercicio 1. Analise a complexidade de pior caso do algoritmo abaixo.

Ou seja, encontre uma funcao 𝑓(𝑛) tal que 𝑇 𝑛 = Θ 𝑓 𝑛 . Justifique.

cst*n

cst*n

cst

log(n) iterations * [cst*n per iteration]

= cst*n*log(n)

(A) #A é vector com n bits

45

Exercises

Exercício 2. Considere um algoritmo que recebe um número real x e o vetor (a0,a1,…,an-1) como

entrada e devolve

a0 + a1x + … + an-1x
n-1

a) Desenvolva um algoritmo para resolver este problema que execute em tempo quadrático.

Faça a análise do algoritmo

b) Desenvolva um algoritmo para resolver este problema que execute em tempo linear. Faça a

análise do algoritmo

Exercises

Solução Exercício 2

a)

 sum = 0

 Para i= 0 até n-1 faça

 aux  ai

 Para j:=1 até i

 aux  x . aux

 Fim Para

 sum  sum + aux

Fim Para

Devolva sum

Análise

Número de operações elementares é igual a

1+2+3+ … + n-1 = n(n-1)/2 = O(n2)

47

Exercises

b)

 sum = a0

 pot = 1

 Para i= 1 até n-1 faça

 pot  x.pot

 sum  sum + ai.pot

 Fim Para

 Devolva sum

Análise

A cada loop são realizadas O(1) operações elementares. Logo, o tempo é linear

48

Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios

Exercises

49

inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ?

• Ω(𝑛2) ?

• Ω (n) ?

• O (n) ?

• Ω (n3/2) ?

. n log n

▪ n

▪ n

▪ n

▪ n

▪n

▪ n log n

3/2

3/2

A high-level view

50

inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ? Yes, beccause largest complexity of algorithm is at most 𝑛2

• Ω(𝑛2) ? No, there is no input where the complexity of the algorithm has

order 𝑛2

• Ω (n) ? Yes

• O (n) ? No, there are inputs where complexity has larger order

• Ω (n3/2) ? Yes

. n log n

▪ n

▪ n

▪ n

▪ n

▪n

▪ n log n

3/2

3/2

A high-level view

What does asymptotic analysis give us?

Does not tell that exact constants in the time-complexity of an algo

Does give a good basis of comparison between algorithms

• Even if optimize implementation of Θ 𝑛2 algorithm and make it 10x

faster, it is probably much slower than a “bad” implementation of a

Θ 𝑛 algorithm (for large instances)

Polynomial Time

Polynomial time. Running time is O(nd) for some constant d independent of

the input size n.

Ex: T(n) = 32𝑛2 and T(n)= n log n are polynomial time

We consider an algorithm efficient if time-complexity is polynomial

efficient

A First Analysis of Recursive Algorithms: Binary Search

Problem: Given a sorted list of numbers (increasing order) a1,…an, decide if number x is in the

list

Binary Search

Function bin_search(A,x)

 n = len(A)

 if n = 1

 if A[1] = x return TRUE

 else return FALSE

 end if

 if x = A[n/2]

 return TRUE

 else if x < A[n/2]

 return bin_search(A[1:n/2], x)

 else if x > A[n/2]

 return bin_search(A[n/2:n], x)

 end if

1 2 3 5 7 10 14 17

Ex: x=14

7 10 14 17

14 17

Problem: Given a sorted list of numbers (increasing order) a1,…an, decide if number x is in the

list

Binary Search

Function bin_search(A,i,j,x)

 if i = j

 if A[i] = x return TRUE

 else return FALSE

 end if

 mid = floor((i+j)/2)

 if x = A[mid]

 return TRUE

 else if x < A[mid]

 return bin_search(A, i, mid-1, x)

 else if x > A[mid]

 return bin_search(A, mid+1, j, x)

 end if

Function bin_search_main(A, x)

 bin_search(A,1,n,x)

1 2 3 5 7 10 14 17

Ex: x=14

7 10 14 17

14 17

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2

we will always ignore floor/ceiling

(the “sorting” slides has one slide that keeps the
ceiling, so you can see that it works ok)

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2
, 𝑇 1 ≤ 𝑐

Claim: The time complexity T(n) of binary search is at O(log n)

Proof 1: T(n) ≤ c + T(n/2) ≤ c + c + T(n/4) ≤ ≤ c+c+....+T(1) ≤ c + c + ... + c

Recursion tree: log n termsT(n)

T(n/2)

T(n/4)

T(1)

c

c

c

. . .

log2n

c log2n

. . .

c

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2
, 𝑇 1 ≤ 𝑐

Claim: The time complexity T(n) of binary search is at most O(log n)

Proof 2: (induction) Base case: n=1

Now suppose that for n’ ≤ n – 1, 𝑇 𝑛’ ≤ 𝑐 ∗ log(𝑛’)

Then T(n) ≤ c + T(n/2) ≤ c + c*log(n/2) = c + c*(log n – 1) = c*log n

Recursive Algorithms

Exercício 2. Projete um algoritmo (recursivo) que receba como entrada um numero real x e um

inteiro positivo n e devolva xn. O algoritmo deve executar O(log n) somas e multiplicações

	Slide 1: 1. Basics of Algorithm Analysis
	Slide 2
	Slide 3: Purpose
	Slide 4: Time complexity is a function
	Slide 5: Definition of time?
	Slide 6: Definition of time?
	Slide 7: Definition of time?
	Slide 8: Size of input instance?
	Slide 9: Size of input instance
	Slide 10: Size of input instance
	Slide 11: Size of input instance
	Slide 12: Size of input instance
	Slide 13: Time complexity is a function
	Slide 14: Which input of size n?
	Slide 15: Time complexity
	Slide 16: Example 1
	Slide 17: Example 2
	Slide 18: Example 3
	Slide 19: Example 4
	Slide 20
	Slide 21: Asymptotic Order of Growth
	Slide 22: Asymptotic Order of Growth
	Slide 23: Asymptotic Order of Growth
	Slide 25: Asymptotic Order of Growth: Upper Bounds
	Slide 26: Asymptotic Order of Growth: Upper Bounds
	Slide 27: Asymptotic Order of Growth: Upper Bounds
	Slide 28: Asymptotic Order of Growth: Upper Bounds
	Slide 29: Asymptotic Order of Growth: Upper Bounds
	Slide 30: Asymptotic Order of Growth: Upper Bounds
	Slide 31: Upper Bounds Involving log/exp
	Slide 32: Upper Bounds Involving log/exp
	Slide 33: Upper Bounds Involving log/exp
	Slide 34: Lower Bounds
	Slide 35: Tight Bounds
	Slide 36: Lower and Tight Bounds
	Slide 37: Lower and Tight Bounds
	Slide 38: Lower and Tight Bounds
	Slide 39: Back to algorithms
	Slide 40: Back to algorithms
	Slide 41: Back to algorithms
	Slide 42: Back to algorithms
	Slide 43: Complexity of Algorithm vs Complexity of Problem
	Slide 44: Exercises
	Slide 45: Exercises
	Slide 46: Exercises
	Slide 47: Exercises
	Slide 48: Exercises
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Polynomial Time
	Slide 69: A First Analysis of Recursive Algorithms: Binary Search
	Slide 71: Binary Search
	Slide 72: Binary Search
	Slide 73: Binary Search Analysis
	Slide 74: Binary Search Analysis
	Slide 75: Binary Search Analysis
	Slide 76: Recursive Algorithms

