1.Basics ofAlgorithm Analysis

Time Complexity of an Algorithm

Purpose

- To estimate how long a program will run
- To estimate the largest input that can reasonably be given to the program
- To compare the efficiency of different algorithms
- To choose an algorithm for an application

Time complexity is a function

Time for a sorting algorithm is different for sorting 10 numbers and sorting 1,000 numbers

Time complexity is a function: Specifies how the running time depends on the size of the input.

Function mapping

"size" n of input

"time" T(n) executed by algorithm

Definition of time?

Definition of time?

- # of seconds
- # lines of code executed
- # of simple operations performed

Definition of time?

- # of seconds Problem: machine dependent
- # lines of code executed Problem: lines of diff. complexity
- # of simple operations performed

Formally: Size n is number of bits to represent instance

But we can work with anything reasonable

reasonable = within a constant factor of number of bits

```
Ex 1:
```

```
83920
```

- # of bits: 17 bits Formal
- # of digits: 5 digits Reasonable: #bits and #digits are always
- Value: 83920 within constant factor:

```
#bits = (\log_2 10) \cdot \text{#digits}
= \sim 3.22 \cdot \text{#digits}
```

Ex 1:

- # of bits: 17 bits Formal
- # of digits: 5 digits Reasonable
- Value: 83920 Not reasonable: $\approx 2^{\text{#bits}}$, much bigger

Ex 2:

• # of elements = 10

Is this reasonable?

Ex 2:

of elements = 10 - Reasonable if each number is, say,
 a 32-bit word, total number of bits is
 #bits = 32 * #elements

Time complexity is a function

Time complexity is a function: Specifies how the running time depends on the size of the input

Function mapping

of bits n to represent input

of basic operations T(n) executed by the algorithm

Which input of size n?

Q: There are 2ⁿ inputs of size n. Which do we consider for the time complexity T(n)?

Worst instance

Worst-case running time. Consider the instance where the algorithm uses largest number of basic operations

- Generally captures efficiency in practice
- Pessimistic view, but hard to find better measure

Time complexity

We reach our final definition of time complexity:

T(n) = number of basic operations the algorithm takes over the worst instance of bit-size n


```
Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x
```

Q: What is the time complexity T(n) of this algorithm?

A: $T(n) \approx 2n + 1$

- Input A of bit-size *n* has *n* entries
- ≈ 2 simple operations per step of **for**, +1 for "x=20"

(ignoring extra operations that make up the **For**)

```
Func Algorithm 2(A) #A is array of bits

x=1

For i=1...len(A)

x=x+1

If x>50 then

x=x+3

End If
End For
```

Q: What is the time complexity T(n) of this algorithm?

A:
$$T(n) \approx 5n - 99$$

- Input A of bit-size *n* has *n* entries
- +1 for initialization "x=1"
- ... \approx 2+1 per iterations of **for** in the first 50 iterations
- ... $\approx 2+1+2$ per iterations of **for** in the other (n-50) iterations (assuming $n \ge 50$)

```
Func Algorithm 3(A) #A is array of 32-bit numbers

For i=1 to len(A)

print "oi"
```

Q: What is the time complexity T(n) of this algorithm?

A: $T(n) \approx (n/32)$

- A of bit-size *n* has *n/32* numbers
- ≈ 1 simple operations per iteration of **for**

Point: Understand input size

```
Func Find10(A) #A is array of 32-bit numbers

For i=1 to len(A)

If A[i]==10

Return i
```

Q: What is the time complexity T(n) of this algorithm?

A:
$$T(n) \approx (n/32) + 1$$

- Worst instance: the only "10" is in the last position
- A of bit-size *n* has *n/32* numbers
- ≈ 1 simple operations per **for**, +1 for **Return**

Point: Complexity of algo is always about the worst instance

Motivation: Determining the exact time complexity T(n) of a real algorithm is very hard and often does not make much sense

In particular, can we say that an algorithm with complexity T(n) = 10n will run slower than an algorithm with complexity T(n) = 9n?

No; for example, maybe the opertions in the first algorithm are slightly faster then in the second (e.g., addition vs. multiplication)

But as we will see, for large instances there is a difference between $\approx n$ and $\approx n^2$ (e.g., ≈ 1.000 vs $\approx 1.000.000$)

We will focus on the asymptotic order of growth of the complexity T(n)

So
$$T(n)=30n^2+7n+10$$
 will become $T(n)=\theta(n^2)$

We just want to differentiate T(n)=

Actually, to compute the asymptotic order of growth of T(n) we will compute upper and lower bounds for T(n):

Ex: T(n) grows at most (not faster) like n^2 T(n) grows at least like n^2

T(n) grows just like n^2

Upper bounds

Informal: T(n) is O(f(n)) if T(n) grows with at **most** the same order of magnitude as f(n) grows:

$$T(n) \stackrel{\sim}{\leq} f(n)$$

T(n) is O(f(n))

Upper bounds

Formal: T(n) is O(f(n)) if there exist a constant c > 0 such that for all $n \ge 1$ we have

$$T(n) \le c \cdot f(n)$$

Equivalent: T(n) is O(f(n)) if there exists c > 0 such that

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}\leq c$$

Exercise 1: $T(n) = 32n^2 + 17n + 32$.

Say if T(n) is:

- $_{\Box}$ O(n²)?
- $_{\Box}$ O(n³)?
- □ O(n) ?

Exercise 1: $T(n) = 32n^2 + 17n + 32$.

Say if T(n) is:

- $_{\square}$ O(n²)? Yes
- $_{\square}$ O(n³)? Yes
- □ O(n) ? No

Solution: To show that T(n) is $O(n^2)$ we can:

- Use the first definition with c = 1000
- Use limits: $\lim_{n\to\infty} \frac{T(n)}{n^2} = 32$, which is a constant

Exercise 2:

- $T(n) = 2^{n+1}$, is it $O(2^n)$?
- $T(n) = 2^{2n}$, is it $O(2^n)$?

Exercise 2:

$$T(n) = 2^{n+1}$$
, is it $O(2^n)$? Yes

$$_{n}$$
 T(n) = 2^{2n} , is it O(2^{n})? No

Solution (second item):
$$\lim_{n\to\infty} \frac{T(n)}{2^n} = \lim_{n\to\infty} 2^n = \infty$$
 is not constant

Solution 2 (second item): To have $2^{2n} < c.2^n$ we need $c > 2^n$. So c is not a constant

Upper Bounds Involving log/exp

Logarithms. $\log_a n$ is $O(\log_b n)$ for any constants a, b > 0 can avoid specifying the base

Logarithms. For every constant d > 0, $\log n$ is $O(n^d)$ $\log grows$ slower than every polynomial

Exponentials. For every constants r > 1 and d > 0, n^d is $O(r^n)$ every exponential grows faster than every polynomial

Upper Bounds Involving log/exp

```
Exercise: is T(n) = 21*n*log n
```

- $O(n^2)$?
- $O(n^{1.1})$?
- · O(n)?

Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

- · O (n^2) ? Yes
- $O(n^{1.1})$? Yes
- \cdot O(n)? No

Solution (first item): Comparing $21*n*log n vs. n^2$ is the same as comparing 21*log n vs. n, and we know log n grows slower than n

Solution 2 (first item): $\lim_{n\to\infty} \frac{T(n)}{n^2} = \lim_{n\to\infty} \frac{21\log n}{n}$, which is at most a constant since log n grows slower than n

Lower Bounds

Informal: T(n) is $\Omega(f(n))$ if T(n) grows with at **least** the same order of magnitude as f(n) grows

Formal: T(n) is $\Omega(f(n))$ if there exist constants c > 0 such that for all n we have T(n) $\geq c \cdot f(n)$.

Equivalent: T(n) is $\Omega(f(n))$ if there exist constant c>0

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}\geq c$$

Tight Bounds

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$

T(n) grows at most as fast as f(n)

T(n) grows at least as fast as f(n)

T(n) is O(f(n))

T(n) is $\Omega(f(n))$

T(n) grows just like f(n)

T(n) is $\Theta(f(n))$

Lower and Tight Bounds

```
Exercise: T(n) = 32n^2 + 17n + 32
Is T(n):
```

- $\Omega(n)$?
- $\Omega(n^2)$?
- $\Theta(n^2)$?
- $\Omega(n^3)$?
- $_{\square}$ $\Theta(n)$?
- $\Theta(n^3)$?

Lower and Tight Bounds

```
Exercise: T(n) = 32n^2 + 17n + 32
Is T(n):
```

- $\Omega(n)$?
- $\Omega(n^2)$?
- $\Theta(n^2)$?
- $\Omega(n^3)$?
- $_{\square}$ $\Theta(n)$?
- $\Theta(n^3)$?

Lower and Tight Bounds

```
Exercise: T(n) = 32n^2 + 17n + 32
Is T(n):
```

- $\Omega(n)$? Yes
- $\Omega(n^2)$? Yes
- $\Theta(n^2)$? Yes
- $\Omega(n^3)$? No
- _□ Θ(n) ? No
- $_{\square}$ $\Theta(n^3)$? No

Solution (second item):
$$\lim_{n\to\infty} \frac{T(n)}{n^2} = 32$$
 is constant > 0

Solution 2 (second item): To show T(n) is $\Omega(n^2)$ use c = 1

```
Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x
```

Q: What is asymptotic time complexity T(n) of this algorithm?

A:
$$T(n) = \Theta(n)$$

• Just notice/remember $T(n) \approx 2n + 1$

```
Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

x=3x
```

Q: What is asymptotic time complexity T(n) of this algorithm?

A:
$$T(n) = \Theta(n)$$

- Input A of bit-size n has n entries, so n iterations of for
- The algorithm makes at most 10n operations $\Rightarrow T(n)$ is O(n)
- The algorithm makes at least n operations $\Rightarrow T(n)$ is $\Omega(n)$
- So $T(n) = \Theta(n)$

```
Func Find10(A) #A is array of 32-bit numbers

For i=1 to len(A)

If A[i]==10

Return i
```

Q: What is the time complexity T(n) of this algorithm?

A:
$$T(n) = \Theta(n)$$

- Remember need to look at worst instance to get T(n)
- Notice/remember that $T(n) \approx (n/32) + 1$

```
Func Find10(A) #A is array of 32-bit numbers

For i=1 to len(A)

If A[i]==10

Return i
```

Q: What is the time complexity T(n) of this algorithm?

A:
$$T(n) = \Theta(n)$$

- Remember need to look at worst instance to get T(n)
- Worst instance: the only "10" is in the last position
- A of bit-size n has n/32 numbers (using formal definition)
- The algorithm makes at most 5n operations $\Rightarrow T(n)$ is O(n)
- The algorithm makes at least n/32 operations (remember worst instance) $\Rightarrow T(n)$ is $\Omega(n)$
- So $T(n) = \Theta(n)$

Complexity of Algorithm vs Complexity of Problem

There are many different algorithms for solving the same problem

Showing that an algorithm is $\Omega(n^3)$ does not mean that we cannot find another algorithm that solves this problem faster, say in $O(n^2)$

Exercicio 1. Analise a complexidade de pior caso do algoritmo abaixo. Ou seja, encontre uma funcao f(n) tal que $T(n) = \Theta(f(n))$. Justifique.

Pseudo1 (A) #A é vector com n bits $\begin{array}{c} t \leftarrow 0 \\ Cont \leftarrow 1 \\ \hline \textbf{Para} \quad i=1 \text{ at\'e n} \\ Cont \leftarrow cont+1 \\ \hline \textbf{Fim Para} \end{array} \qquad \begin{array}{c} \textbf{cst*n} \\ \hline \end{array}$ Fim Para Enquanto $cont \geq 1$ Fim Enquanto

Solucao: O algoritmo é $\Theta(n \log n)$

Exercício 2. Considere um algoritmo que recebe um número real x e o vetor ($a_0, a_1, ..., a_{n-1}$) como entrada e devolve

$$a_0 + a_1 x + ... + a_{n-1} x^{n-1}$$

a) Desenvolva um algoritmo para resolver este problema que execute em tempo **quadrático**. Faça a análise do algoritmo

b) Desenvolva um algoritmo para resolver este problema que execute em tempo **linear**. Faça a análise do algoritmo

```
Solução Exercício 2
a)
   sum = 0
  Para i= 0 até n-1 faça
        aux \leftarrow a_i
        Para j:=1 até i
                aux \leftarrow x \cdot aux
        Fim Para
        sum ← sum + aux
    Fim Para
    Devolva sum
    Análise
    Número de operações elementares é igual a
                                 1+2+3+...+n-1 = n(n-1)/2 = O(n^2)
```

```
b)

sum = a<sub>0</sub>

pot = 1

Para i= 1 até n-1 faça

pot ← x.pot

sum ← sum + a<sub>i</sub>.pot

Fim Para

Devolva sum

Análise
```

A cada loop são realizadas O(1) operações elementares. Logo, o tempo é linear

Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios

A high-level view

Can we say that the time complexity of A is?

- $O(n^2)$?
- $\Omega(n^2)$?
- Ω (n) ?
- O (n)?
- Ω ($n^{3/2}$) ?

A high-level view

Can we say that the time complexity of A is?

- $O(n^2)$? Yes, beccause largest complexity of algorithm is at most n^2
- $\Omega(n^2)$? No, there is no input where the complexity of the algorithm has order n^2
- Ω (n) ? Yes
- O (n) ? No, there are inputs where complexity has larger order
- Ω ($n^{3/2}$) ? Yes

What does asymptotic analysis give us?

Does not tell that exact constants in the time-complexity of an algo-

Does give a good basis of comparison between algorithms

• Even if optimize implementation of $\Theta(n^2)$ algorithm and make it 10x faster, it is probably much slower than a "bad" implementation of a $\Theta(n)$ algorithm (for large instances)

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Polynomial Time

Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.

Ex: $T(n) = 32n^2$ and $T(n) = n \log n$ are polynomial time

We consider an algorithm efficient if time-complexity is polynomial

•	•	•			4
	м			n	т
		L	C		II.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

A First Analysis of Recursive Algorithms: Binary Search

Binary Search

Problem: Given a sorted list of numbers (increasing order) a1,...an, decide if number x is in the list

```
Function bin search (A,x)
   n = len(A)
   if n = 1
      if A[1] = x return TRUE
      else return FALSE
   end if
   if x = A[n/2]
      return TRUE
   else if x < A[n/2]
      return bin search(A[1:n/2], x)
   else if x > A[n/2]
      return bin_search(A[n/2:n], x)
   end if
```


Binary Search

Problem: Given a sorted list of numbers (increasing order) a1,...an, decide if number x is in the list

```
Function bin_search(A,i,j,x)
                                              Ex: x = 14
   if i = j
      if A[i] = x return TRUE
                                                               10 | 14 | 17
      else return FALSE
   end if
   mid = floor((i+j)/2)
   if x = A[mid]
      return TRUE
   else if x < A[mid]</pre>
      return bin search(A, i, mid-1, x)
   else if x > A[mid]
      return bin search(A, mid+1, j, x)
   end if
```

Function bin search main(A, x)

bin search (A,1,n,x)

Binary Search Analysis

Binary search recurrence: $T(n) \le$

(the "sorting" slides has one slide that keeps the ceiling, so you can see that it works ok)

Binary Search Analysis

Binary search recurrence: $T(n) \le c + T\left(\frac{n}{2}\right)$, $T(1) \le c$

Claim: The time complexity T(n) of binary search is at O(log n)

Proof 1:
$$T(n) \le c + T(n/2) \le c + c + T(n/4) \le \le c + c + + T(1) \le c + c + + c$$

Recursion tree:

Binary Search Analysis

Binary search recurrence:
$$T(n) \le c + T\left(\frac{n}{2}\right)$$
, $T(1) \le c$

Claim: The time complexity T(n) of binary search is at most O(log n)

Proof 2: (induction) Base case: n=1

Now suppose that for $n' \le n - 1$, $T(n') \le c * \log(n')$

Then $T(n) \le c + T(n/2) \le c + c*log(n/2) = c + c*(log n - 1) = c*log n$

Recursive Algorithms

Exercício 2. Projete um algoritmo (recursivo) que receba como entrada um numero real x e um inteiro positivo n e devolva x^n . O algoritmo deve executar $O(\log n)$ somas e multiplicações