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1.

Basics of 

Algorithm Analysis



Time Complexity of an Algorithm



Purpose

• To estimate how long a program will run

• To estimate the largest input that can reasonably be given to 

the program

• To compare the efficiency of different algorithms 

• To choose an algorithm for an application



Time complexity is a function

Time for a sorting algorithm is different for sorting 10

numbers and sorting 1,000 numbers

Time complexity is a function: Specifies how the running 

time depends on the size of the input.  

Function mapping 

                                 “size” 𝑛 of input

                    “time” 𝑇(𝑛) executed by algorithm 
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Definition of time?
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Definition of time?

• # of seconds     Problem: machine dependent

• # lines of code executed     Problem: lines of diff. complexity

• # of simple operations performed 
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Definition of time?

this is what we will use

• # of seconds     Problem: machine dependent

• # lines of code executed     Problem: lines of diff. complexity

• # of simple operations performed 
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Size of input instance?

Formally: Size 𝑛 is number of bits to represent instance

But we can work with anything reasonable

reasonable = within a constant factor of number of bits



Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable: #bits and #digits are always 

within constant factor:

#bits = (log2 10) ⋅ #digits

                           =      ~3.22 ⋅ #digits



Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable

- Not reasonable: ≈ 2#bits, much bigger



Ex 2:

• # of elements = 10

11

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

Is this reasonable?



Ex 2:

• # of elements = 10

12

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

- Reasonable if each number is, say, 

a 32-bit word, total number of bits is 

                 #bits = 32 * #elements 



Time complexity is a function

Time complexity is a function: Specifies how the running time 

depends on the size of the input

Function mapping 

# of bits 𝑛 to represent input

# of basic operations 𝑇(𝑛) executed by the algorithm
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Which input of size n?

Q: There are 2n inputs of size n. Which do we consider

for the time complexity T(n)?

Worst-case running time. Consider the instance where the 

algorithm uses largest number of basic operations

• Generally captures efficiency in practice

• Pessimistic view, but hard to find better measure

Worst instance



Time complexity 

We reach our final definition of time complexity:

T(n) = number of basic operations the algorithm takes over 

the worst instance of bit-size n

input size n

complexity

T(n)



Example 1

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 2𝑛 + 1

• Input A of bit-size n has n entries

• ≈ 2 simple operations per step of for, +1 for “x=20”

(ignoring extra operations that make up the For)

Func Algorithm 1(A)  #A is array of bits

x=20

For i=1...len(A)

x=3x



Example 2

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 5𝑛 − 99

• Input A of bit-size n has n entries

• +1 for initialization “x=1”

• … ≈ 2+1 per iterations of for in the first 50 iterations

• … ≈ 2+1+2 per iterations of for in the other (n-50) iterations

(assuming 𝑛 ≥ 50)

Func Algorithm 2(A)            #A is array of bits

x=1  

For i=1...len(A)

x=x+1

If x>50 then

x=x+3

End If

End For



Example 3

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32) 

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per iteration of for

Point: Understand input size

Func Algorithm 3(A)        #A is array of 32-bit numbers

   For i=1 to len(A)

        print “oi” 



Example 4

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32)  +  1

• Worst instance: the only “10” is in the last position 

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per for, +1 for Return

Point: Complexity of algo is always about the worst instance

Func Find10(A)              #A is array of 32-bit numbers

   For i=1 to len(A)

        If A[i]==10

            Return i 



Asymptotic Order of Growth



Asymptotic Order of Growth

Motivation: Determining the exact time complexity T(n) of a real 

algorithm is very hard and often does not make much sense

In particular, can we say that an algorithm with complexity 

T(n) = 10n 

will run slower than an algorithm with complexity 

T(n) = 9n?

No; for example, maybe the opertions in the first algorithm are 

slightly faster then in the second 

(e.g., addition vs. multiplication)

But as we will see, for large instances there is a difference 

between ≈ 𝑛 and ≈ 𝑛2

(e.g., ≈ 1.000 vs ≈ 1.000.000)



Asymptotic Order of Growth

We will focus on the asymptotic order of growth of the 

complexity T(n)

So T(n)=30𝑛2 + 7𝑛 + 10 will become T(n)= 𝜃 𝑛2

We just want to differentiate T(n)=

~𝑛2 vs ~n vs  ~n log n vs ~2𝑛 ....



Asymptotic Order of Growth

Actually, to compute the asymptotic order of growth of 

T(n) we will compute upper and lower bounds for T(n):

Ex:   T(n) grows at most (not faster) like 𝑛2

T(n) grows at least like 𝑛2

T(n) grows just like 𝑛2
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Asymptotic Order of Growth: Upper Bounds

Upper bounds  

Informal: T(n) is O(f(n)) if T(n) grows with at most the same 
order of magnitude as f(n) grows:

      T(n) ≤ f(n)

T(n) is O(f(n))

~



Asymptotic Order of Growth: Upper Bounds

Upper bounds  

Formal: T(n) is O(f(n)) if there exist a constant 𝑐 > 0 such 
that for all 𝑛 ≥ 1 we have 

   T(n)  c · f(n)

Equivalent: T(n) is O(f(n)) if there exists c > 0 such that

c
nf

nT

n


→ )(

)(
lim
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Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

O(n2) ?  

O(n3) ? 

O(n) ?



Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

O(n2) ?  Yes 

O(n3) ?  Yes

O(n) ?   No

Solution: To show that T(n) is O(n2) we can:

Use the first definition with c = 1000

Use limits: lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32, which is a constant
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Asymptotic Order of Growth: Upper Bounds

Exercise 2:

T(n) = 2n+1, is it O(2n) ? 

T(n) = 22n , is it O(2n) ? 
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Asymptotic Order of Growth: Upper Bounds

Exercise 2:

T(n) = 2n+1, is it O(2n) ? Yes

T(n) = 22n , is it O(2n) ? No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

2𝑛 = lim
𝑛→∞

2𝑛 = ∞ is not constant

Solution 2 (second item): To have 22n <  c.2n we need c>2n. So c 

is not a constant



Upper Bounds Involving log/exp

Logarithms.  log a n is  O(log b n) for any constants a, b > 0

Logarithms.  For every constant d > 0,  log n  is O(nd)

Exponentials.  For every constants r > 1 and d > 0,  nd  is  O(rn)
every exponential grows faster than every polynomial

can avoid specifying the 
base

log grows slower than every polynomial



Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ? 

• O(𝑛1.1) ?

• O(𝑛) ? 



Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ?  Yes

• O(𝑛1.1) ?  Yes

• O(𝑛) ?  No

Solution (first item): Comparing 21*n*log n  vs.  n2 is the same as 

comparing 21*log n  vs.  n, and we know log n grows slower 

than n

Solution 2 (first item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = lim
𝑛→∞

21log 𝑛

𝑛
, which is at most a 

constant since log n grows slower than n



Lower Bounds

Informal: T(n) is (f(n)) if T(n) grows with at least the same order 

of magnitude as f(n) grows

Formal: T(n) is (f(n)) if there exist constants c > 0 such that for 

all n we have T(n)  c · f(n).

Equivalent: T(n) is (f(n)) if there exist constant c>0

c
nf

nT

n


→ )(

)(
lim



Tight Bounds

Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n))

T(n) grows at most as fast as f(n)         T(n) is O(f(n)) 

T(n) grows at least as fast as f(n)          T(n) is Ω(f(n))

T(n) grows just like f(n)                         T(n) is Θ(f(n))
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Lower and Tight Bounds

Exercise:   T(n) = 32n2 + 17n + 32

Is T(n):

(n) ?

(n2) ?

(n2) ?

(n3) ?

(n) ?

(n3) ?
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Lower and Tight Bounds

Exercise:   T(n) = 32n2 + 17n + 32

Is T(n):

(n) ?

(n2) ?

(n2) ?

(n3) ?

(n) ?

(n3) ?



Lower and Tight Bounds

Exercise:   T(n) = 32n2 + 17n + 32

Is T(n):

(n) ? Yes

(n2) ?  Yes

(n2) ?  Yes

(n3) ?  No

(n) ?  No

(n3) ?  No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32 is constant > 0

Solution 2 (second item): To show T(n) is Ω(𝑛2) use c = 1



Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Just notice/remember 𝑇 𝑛 ≈ 2𝑛 + 1

Func Algorithm 1(A)  #A is array of bits

x=20

For i=1...len(A)

x=3x



Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Input A of bit-size n has n entries, so n iterations of for

• The algorithm makes at most 10n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n operations ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Algorithm 1(A)  #A is array of bits

x=20

For i=1...len(A)

x=3x



Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Notice/remember that 𝑇 𝑛 ≈ (𝑛/32)  +  1

Func Find10(A)              #A is array of 32-bit numbers

   For i=1 to len(A)

        If A[i]==10

            Return i 



Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Worst instance: the only “10” is in the last position 

• A of bit-size n has n/32 numbers (using formal definition)

• The algorithm makes at most 5n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n/32 operations (remember worst 

instance) ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Find10(A)              #A is array of 32-bit numbers

   For i=1 to len(A)

        If A[i]==10

            Return i 
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Complexity of Algorithm vs Complexity of Problem

There are many different algorithms for solving the same problem

Showing that an algorithm is Ω(n3) does not mean that we cannot find 

another algorithm that solves this problem faster, say in O(𝑛2)



Exercises

Solucao: O algoritmo é Θ(𝑛 log 𝑛)

Exercicio 1. Analise a complexidade de pior caso do algoritmo abaixo. 

Ou seja, encontre uma funcao 𝑓(𝑛) tal que 𝑇 𝑛 = Θ 𝑓 𝑛 . Justifique.

cst*n

cst*n

cst

log(n) iterations * [cst*n  per iteration] 

= cst*n*log(n)

(A)   #A é vector com n bits
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Exercises

Exercício 2. Considere um algoritmo que recebe um número real x e o vetor (a0,a1,…,an-1) como 

entrada e devolve 

a0 + a1x + … + an-1x
n-1

a) Desenvolva um algoritmo para resolver este problema que execute em tempo quadrático. 

Faça a análise do algoritmo

b) Desenvolva um algoritmo para resolver este problema que execute em tempo linear. Faça a 

análise do algoritmo



Exercises

Solução Exercício 2

a) 

 sum = 0

 Para i= 0 até n-1 faça

  aux  ai

  Para j:=1 até i

   aux  x . aux

  Fim Para

  sum  sum + aux

Fim Para

Devolva sum

Análise

Número de operações elementares é igual a

1+2+3+ … + n-1 = n(n-1)/2 = O(n2)
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Exercises

b) 

 sum = a0

 pot = 1

 Para i= 1 até n-1 faça

  pot  x.pot

  sum  sum + ai.pot

  Fim Para 

  Devolva sum

Análise

A cada loop são realizadas O(1) operações elementares. Logo, o tempo  é linear
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Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios

Exercises
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inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ? 

• Ω(𝑛2) ? 

• Ω (n) ? 

• O (n) ? 

• Ω ( n3/2) ?

. n log n

▪ n

▪ n

▪ n

▪ n

▪n

▪ n log n

3/2

3/2

A high-level view
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inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ? Yes, beccause largest complexity of algorithm is at most 𝑛2

• Ω(𝑛2) ? No, there is no input where the complexity of the  algorithm has

order 𝑛2

• Ω (n) ? Yes

• O (n) ? No, there are inputs where complexity has larger order

• Ω ( n3/2) ? Yes

. n log n

▪ n

▪ n

▪ n

▪ n

▪n

▪ n log n

3/2

3/2

A high-level view



What does asymptotic analysis give us?

Does not tell that exact constants in the time-complexity of an algo

Does give a good basis of comparison between algorithms

• Even if optimize implementation of Θ 𝑛2 algorithm and make it 10x 

faster, it is probably much slower than a “bad” implementation of a 

Θ 𝑛 algorithm (for large instances)



Polynomial Time

Polynomial time.  Running time is O(nd) for some constant d independent of 

the input size n.

Ex: T(n) = 32𝑛2 and   T(n)= n log n    are polynomial time

We consider an algorithm efficient if time-complexity is polynomial

efficient



A First Analysis of Recursive Algorithms: Binary Search



Problem: Given a sorted list of numbers (increasing order) a1,…an, decide if number x is in the 

list

Binary Search

Function bin_search(A,x)

   n = len(A)

   if n = 1

      if A[1] = x return TRUE

      else return FALSE

   end if

   if x = A[n/2]

      return TRUE

   else if x < A[n/2]

      return bin_search(A[1:n/2], x)

   else if x > A[n/2]

      return bin_search(A[n/2:n], x)

   end if

1    2    3    5    7   10  14  17

Ex: x=14 

7   10  14  17

14  17



Problem: Given a sorted list of numbers (increasing order) a1,…an, decide if number x is in the 

list

Binary Search

Function bin_search(A,i,j,x)

   if i = j

      if A[i] = x return TRUE

      else return FALSE

   end if

   mid = floor((i+j)/2)

   if x = A[mid]

      return TRUE

   else if x < A[mid]

      return bin_search(A, i, mid-1, x)

   else if x > A[mid]

      return bin_search(A, mid+1, j, x)

   end if

Function bin_search_main(A, x)

   bin_search(A,1,n,x)

1    2    3    5    7   10  14  17

Ex: x=14 

7   10  14  17

14  17



Binary Search Analysis

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2

we will always ignore floor/ceiling

(the “sorting” slides has one slide that keeps the 
ceiling, so you can see that it works ok)



Binary Search Analysis

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2
,      𝑇 1 ≤ 𝑐

Claim: The time complexity T(n) of binary search is at O(log n)

Proof 1: T(n) ≤ c + T(n/2) ≤ c + c + T(n/4) ≤ ....  ≤ c+c+....+T(1) ≤ c + c + ... + c

Recursion tree: log n termsT(n)

T(n/2)

T(n/4)

T(1)

c

c

c

. . .

log2n

c log2n

. . .

c



Binary Search Analysis

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2
, 𝑇 1 ≤ 𝑐

Claim: The time complexity T(n) of binary search is at most O(log n)

Proof 2: (induction) Base case: n=1

Now suppose that for n’ ≤ n – 1, 𝑇 𝑛’ ≤ 𝑐 ∗ log(𝑛’)

Then T(n) ≤ c + T(n/2) ≤ c + c*log(n/2) = c + c*(log n – 1) = c*log n



Recursive Algorithms

Exercício 2. Projete um algoritmo (recursivo) que receba como entrada um numero real x e um 

inteiro positivo n e devolva xn.   O algoritmo deve executar O(log n) somas e multiplicações
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