
1

Chapter 2

Basics of

Algorithm Analysis

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.1 Time Complexity of an Algorithm

Purpose

• To estimate how long a program will run

• To estimate the largest input that can reasonably be given to

the program

• To compare the efficiency of different algorithms

• To choose an algorithm for an application

Time complexity is a function

Time for a sorting algorithm is different for sorting 10

numbers and sorting 1,000 numbers

Time complexity is a function: Specifies how the running

time depends on the size of the input.

Function mapping

 “size” 𝑛 of input

 “time” 𝑇(𝑛) executed by algorithm

5

Definition of time?

6

Definition of time?

• # of seconds Problem: machine dependent

• # lines of code executed Problem: lines of diff. complexity

• # of simple operations performed

7

Definition of time?

this is what we will use

• # of seconds Problem: machine dependent

• # lines of code executed Problem: lines of diff. complexity

• # of simple operations performed

8

Size of input instance?

Formally: Size 𝑛 is number of bits to represent instance

But we can work with anything reasonable

reasonable = within a constant factor of number of bits

Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable: #bits and #digits are

always within constant factor

≈ log2 10 ≈ 3.32

Ex 1:

• # of bits: 17 bits

• # of digits: 5 digits

• Value: 83920

Size of input instance

83920

- Formal

- Reasonable

- Not reasonable: ≈ 2#bits, much bigger

Ex 2:

• # of elements = 10

11

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

Is this reasonable?

Ex 2:

• # of elements = 10

12

Size of input instance

14,23,25,30,31,52,62,79,88,98

10

- Reasonable: if each number is stored

into, say, into a 32-bit word, total

number of bits is

 #bits = 32 * #elements

Time complexity is a function

Time complexity is a function: Specifies how the running time

depends on the size of the input

Function mapping

of bits 𝑛 to represent input

of basic operations 𝑇(𝑛) executed by the algorithm

14

Which input of size n?

Q: There are 2n inputs of size n. Which do we consider

for the time complexity T(n)?

Worst-case running time. Consider the instance where the

algorithm uses largest number of basic operations

• Generally captures efficiency in practice

• Pessimistic view, but hard to find better measure

Worst instance

Time complexity

We reach our final definition of time complexity:

T(n) = number of basic operations the algorithm takes over the worst

instance of bit-size n

input size n

complexity

T(n)

Example 1

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 2𝑛 + 1

• Input A of bit-size n has n entries

• ≈ 2 simple operations per step of for, +1 for “x=20”

(ignoring extra operations that make up the For)

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

 x=3x

Example 2

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ 5𝑛 − 99

• Input A of bit-size n has n entries

• +1 for initialization “x=1”

• … ≈ 2+1 per iterations of for in the first 50 iterations

• … ≈ 2+1+2 per iterations of for in the other 50 iterations

(assuming 𝑛 ≥ 50)

Func Algorithm 2(A) #A is array of bits

x=1

For i=1...len(A)

 x=x+1

 If x>50 then

 x=x+3

 End If

End For

Example 3

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32)

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per iteration of for

Point: Understand input size

Func Algorithm 3(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 print “oi”

Example 4

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 ≈ (𝑛/32) + 1

• Worst instance: the only “10” is in the last position

• A of bit-size n has n/32 numbers

• ≈ 1 simple operations per for, +1 for Return

Point: Complexity of algo is always about the worst instance

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

2.2 Asymptotic Order of Growth

Asymptotic Order of Growth

Motivation: Determining the exact time complexity T(n) of a real

algorithm is very hard and often does not make much sense

In particular, can we say that an algorithm with complexity

 T(n) = 10n

will run slower than and algorithm with complexity

 T(n) = 9n+6?

No; for example, maybe the opertions in the first algorithm are

slightly faster then in the second

(e.g., addition vs. multiplication)

But as we will see, for large instances there is a difference

between ≈ 𝑛 and ≈ 𝑛2
(e.g., ≈ 1.000 vs ≈ 1.000.000)

Asymptotic Order of Growth

We will focus on the asymptotic order of growth of the

complexity T(n)

So T(n)=30𝑛2 + 10 will become T(n)= 𝜃 𝑛2

We just want to differentiate T(n)=

 ~𝑛2 vs ~n vs ~n log n vs ~2𝑛

Asymptotic Order of Growth

Actually, to compute the asymptotic order of growth of

T(n) we will compute upper and lower bounds for T(n):

Ex: T(n) grows at most (not faster) like 𝑛2

 T(n) grows at least like 𝑛2

T(n) grows just like 𝑛2

24

Asymptotic Order of Growth: Upper Bounds

Upper bounds

Informal: T(n) is O(f(n)) if T(n) grows with at most the same
order of magnitude as f(n) grows

T(n) is O(f(n)) T(n) is O(f(n))

both grow at same

order of magnitude

Asymptotic Order of Growth: Upper Bounds

Upper bounds

Formal: T(n) is O(f(n)) if there exist a constant 𝑐 ≥ 0 such
that for all 𝑛 ≥ 1 we have

 T(n) c · f(n).

Equivalent: T(n) is O(f(n)) if there exists c 0 such that

c

nf

nT

n

)(

)(
lim

26

Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

 O(n2) ?

 O(n3) ?

 O(n) ?

Asymptotic Order of Growth: Upper Bounds

Exercise 1: T(n) = 32n2 + 17n + 32.

Say if T(n) is:

 O(n2) ? Yes

 O(n3) ? Yes

 O(n) ? No

Solution: To show that T(n) is O(n2) we can:

 Use the first definition with c = 1000

 Use limits: lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32, which is a constant

28

Asymptotic Order of Growth: Upper Bounds

Exercise 2:

 T(n) = 2n+1, is it O(2n) ?

 T(n) = 22n , is it O(2n) ?

29

Asymptotic Order of Growth: Upper Bounds

Exercise 2:

 T(n) = 2n+1, is it O(2n) ? Yes

 T(n) = 22n , is it O(2n) ? No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

2𝑛 = lim
𝑛→∞

2𝑛 = ∞ is not constant

Solution 2 (second item): To have 22n < c.2n we need c>2n. So c

is not a constant

Upper Bounds Involving log/exp

Logarithms. log a n is O(log b n) for any constants a, b > 0

Logarithms. For every x > 0, log n is O(nx)

Exponentials. For every r > 1 and every d > 0, nd é O(rn)

every exponential grows faster than every polynomial

can avoid specifying the
base

log grows slower than every polynomial

Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ?

• O(𝑛1.1) ?

• O(𝑛) ?

Upper Bounds Involving log/exp

Exercise: is T(n) = 21*n*log n

• O(𝑛2) ? Yes

• O(𝑛1.1) ? Yes

• O(𝑛) ? No

Solution (first item): Comparing 21*n*log n vs. n2 is the same as

comparing 21*log n vs. n, and we know log n grows slower

than n

Solution 2 (first item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = lim
𝑛→∞

21log 𝑛

𝑛
, which is at most a

constant since log n grows slower than n

Lower Bounds

Informal: T(n) is (f(n)) if T(n) grows with at least the same order

of magnitude as f(n) grows

Formal: T(n) is (f(n)) if there exist constants c > 0 such that for

all n we have T(n) c · f(n).

Equivalent: T(n) is (f(n)) if there exist constant c>0

c

nf

nT

n

)(

)(
lim

Tight Bounds

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n))

 T(n) grows at most as fast as f(n) T(n) is O(f(n))

 T(n) grows at least as fast as f(n) T(n) is Ω(f(n))

T(n) grows just like f(n) T(n) is Θ(f(n))

35

Lower and Tight Bounds

Exercise: T(n) = 32n2 + 17n + 32

Is T(n):

 (n) ?

 (n2) ?

 (n2) ?

 (n3) ?

 (n) ?

 (n3) ?

Lower and Tight Bounds

Exercise: T(n) = 32n2 + 17n + 32

Is T(n):

 (n) ? Yes

 (n2) ? Yes

 (n2) ? Yes

 (n3) ? No

 (n) ? No

 (n3) ? No

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32 is constant > 0

Solution 2 (second item): To show T(n) is Ω(𝑛2) use c = 1

Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Just notice/remember 𝑇 𝑛 ≈ 2𝑛 + 1

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

 x=3x

Back to algorithms

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ(𝑛)

• Input A of bit-size n has n entries, so n iterations of for

• The algorithm makes at most 10n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n operations ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Algorithm 1(A) #A is array of bits

x=20

For i=1...len(A)

 x=3x

Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Notice/remember that 𝑇 𝑛 ≈ (𝑛/32) + 1

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

Back to algorithms

Q: What is the time complexity 𝑇(𝑛) of this algorithm?

A: 𝑇 𝑛 = Θ 𝑛

• Remember need to look at worst instance to get T(n)

• Worst instance: the only “10” is in the last position

• A of bit-size n has n/32 numbers

• The algorithm makes at most 5n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛)

• The algorithm makes at least n operations (remember worst

instance) ⇒ 𝑇(𝑛) is Ω(𝑛)

• So 𝑇 𝑛 = Θ(𝑛)

Func Find10(A) #A is array of 32-bit numbers

 For i=1 to len(A)

 If A[i]==10

 Return i

41

inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ?

• Ω(𝑛2) ?

• Ω (n) ?

• O (n) ?

• Ω (n3/2) ?

 . n log n

 n

 n

 n

 n

n

 n log n

3/2

3/2

Back to algorithms

42

inputs of size n

for algorithm A

(cartoon)

Can we say that the time complexity of A is?

• O(𝑛2) ? Yes, beccause largest complexity of algorithm is at most 𝑛2

• Ω(𝑛2) ? No, there is no input where the complexity of the algorithm has

 order 𝑛2

• Ω (n) ? Yes

• O (n) ? No, there are inputs where complexity has larger order

• Ω (n3/2) ? Yes

 . n log n

 n

 n

 n

 n

n

 n log n

3/2

3/2

Back to algorithms

What does asymptotic analysis give us?

Does not tell that exact constants in the time-complexity of an algo

Does give a good basis of comparison between algorithms

• Even if optimize implementation of Θ 𝑛2 algorithm and make it 10x

faster, it is probably much slower than a “bad” implementation of a

Θ 𝑛 algorithm (for large instances)

2.4 A Survey of Common Running Times

48

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of

the input.

Computing the maximum. Compute maximum of n numbers a1, …, an.

Remark. For all instances the algorithm executes a linear number of

operations

max a1
for i = 2 to n {

 if (ai > max)

 max ai
}

49

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of

the input.

Finding an item x in a list. Test if x is in the list a1, …, an

Remark. For some instances the algorithm is sublinear (e.g. x in the

first position)

Exist false

for i = 1 to n {

 if (ai== x)

 Exist true

 break

}

50

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,ak with B = b1,b2,…,bk

(increasing order) into sorted whole.

Claim. Merging two lists of size k takes O(n) time (n=total size=2k).

Pf. After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (I <= |A| and j <= |B|) {

 if (ai bj) append ai to output list and increment i

 else(ai bj)append bj to output list and increment j
}

append remainder of nonempty list to output list

51

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform

O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies

of a file arrive at a server, what is largest interval of time when no

copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in

order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,

(xn, yn), find the distance of the closest pair.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion

min sqrt((x1 - x2)
2 + (y1 - y2)

2)

for i = 1 to n-1 {

 for j = i+1 to n {

 d sqrt((xi - xj)
2 + (yi - yj)

2)

 if (d < min)

 min d

 }

}

54

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Let S1, …, Sn be subsets of {1, 2, …, n}. Is there a

disjoint pair of sets?

Set Representation. Assume that each set is represented as an

incidence vector.

 n=8 and S={2,3,6}, S is represented by (0,1,1,0,0,1,0,0)

 n=8 and S={1,4}, S is represented by (1,0,0,1,0,0,0,0)

Algorithm:

For i=1...n-1

 For j=i+1...n

 If Disjoint(i, j)

 Return ‘There are disjoint sets’

 End If

 End For

End For

Return ‘There are no disjoint sets’

Disjoint(i, j):

k1

While k<=n

 If Si(k)=Sj(k)=1 Return False

 k++

End While

Return True

56

1. A complexidade de tempo do algoritmo é O(n3)?

2. A complexidade de tempo do algoritmo é Ω(n3) ?

Cubic Time: O(n3)

57

1. A complexidade de tempo do algoritmo é O(n3)? SIM

2. A complexidade de tempo do algoritmo é Ω(n3) ? SIM

“Bad” instance: all sets are equal to {n} => algoritm makes Ω(n3) basic

operations

Cubic Time: O(n3)

58

Exponential Time

Independent set. Given a graph, find the largest independent set?

O(n2 2n) solution. Enumerate all subsets.

S*

foreach subset S of nodes {

 check whether S in an independent set

 if (S is largest independent set seen so far)

 update S* S

 }

}

Polynomial Time

Polynomial time. Running time is O(nd) for some constant d

independent of the input size n.

Ex: T(n) = 32𝑛2 and T(n)= n log n are polynomial time

We consider an algorithm efficient if time-complexity is polynomial

efficient

62

Complexity of Algorithm vs Complexity of Problem

There are many different algorithms for solving the same problem

Showing that an algorithm is Ω(n3) does not mean that we cannot find

another algorithm that solves this problem faster, say in O(𝑛2)

Exercises

Solucao: O algoritmo é Θ(𝑛 log 𝑛)

Analise a complexidade de pior caso do algoritmo abaixo. Ou seja,

encontre uma funcao 𝑓(𝑛) tal que 𝑇 𝑛 = Θ 𝑓 𝑛 . Justifique.

cst*n

cst*n

cst

log(n) iterations * [cst*n per iteration]

= cst*n*log(n)

64

Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios

Exercises

65

Exercises

Exercício 1. Considere um algoritmo que recebe um número real x e o

vetor (a0,a1,…,an-1) como entrada e devolve

a0 + a1x + … + an-1x
n-1

a) Desenvolva um algoritmo para resolver este problema que execute

em tempo quadrático. Faça a análise do algoritmo

b) Desenvolva um algoritmo para resolver este problema que execute

em tempo linear. Faça a análise do algoritmo

66

Exercises

a)

 sum = 0

 Para i= 0 até n-1 faça

 aux ai

 Para j:=1 até i

 aux x . aux

 Fim Para

 sum sum + aux

Fim Para

Devolva sum

 Análise

Número de operações elementares é igual a

1+2+3+ … + n-1 = n(n-1)/2 = O(n2)

67

Exercises

b)

 sum = a0

 pot = 1

 Para i= 1 até n-1 faça

 pot x.pot

 sum sum + ai.pot

 Fim Para

 Devolva sum

 Análise

A cada loop são realizadas O(1) operações elementares. Logo, o

tempo é linear

2.5 A First Analysis of a Recursive Algorithm:

Binary Search

Problem: Given a sorted list of numbers (increasing order) a1,…an,

decide if number x is in the list

Binary Search

Function bin_search(i,j, x)

 if i = j

 if a_i = x return TRUE

 else return FALSE

 end if

 mid = floor((i+j)/2)

 if x = a_mid

 return TRUE

 else if x < a_mid

 return bin_search(i, mid-1, x)

 else if x > a_mid

 return bin_search(mid+1, j, x)

 end if

Function bin_search_main(x)

 bin_search(1,n, x)

7 10 14 17

 1 2 3 5 7 10 14 17

Ex: x=14

14 17

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2

we will always ignore floor/ceiling

(the “sorting” slides has one slide that keeps the
ceiling, so you can see that it works)

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2

Claim: The time complexity T(n) of binary search is at most c*log n

Proof 1: T(n) ≤ c + T(n/2) ≤ c + c + T(n/4) ≤ ≤ c + c + ... + c

log n terms

T(n)

T(n/2)

T(n/4)

T(2)

c

c

c

. . .

log2n

 c log2n

. . .

c

Binary Search Analysis

Binary search recurrence: 𝑇 𝑛 ≤ 𝑐 + 𝑇
𝑛

2

Claim: The time complexity T(n) of binary search is at most c*log n

Proof 2: (induction) Base case: n=1

Now suppose that for n’ ≤ n – 1, 𝑇 𝑛’ ≤ 𝑐 ∗ log (𝑛’)

Then T(n) ≤ c + T(n/2) ≤ c + c*log(n/2) = c + c*(log n – 1) = c*log n

Recursive Algorithms

Exercício 2. Projete um algoritmo (recursivo) que receba como entrada

um numero real x e um inteiro positivo n e devolva xn. O algoritmo

deve executar O(log n) somas e multiplicações

Recursive Algorithms

Proc Pot(x,n)

 Se n=0 return 1

 Se n=1 return x

 Se n é par

 tmpPot(x,n/2)

 Return tmp*tmp

 Senão n é ímpar

 tmpPot(x,(n-1)/2)

 Return x*tmp*tmp

 Fim Se

Fim

Análise:

 T(n)= c+ T(n/2) => T(n) é O(log n)

