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2.1  Time Complexity of an Algorithm 



Purpose 

• To estimate how long a program will run 

• To estimate the largest input that can reasonably be given to 

the program 

• To compare the efficiency of different algorithms  

• To choose an algorithm for an application 



Time complexity is a function 

Time for a sorting algorithm is different for sorting 10 

numbers and sorting 1,000 numbers 

 

Time complexity is a function: Specifies how the running 

time depends on the size of the input.   

 

Function mapping  
 

                                 “size” 𝑛 of input 

 
                    “time” 𝑇(𝑛) executed by algorithm  
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Definition of time? 
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Definition of time? 

• # of seconds     Problem: machine dependent 

• # lines of code executed     Problem: lines of diff. complexity 

• # of simple operations performed  
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Definition of time? 

this is what we will use 

• # of seconds     Problem: machine dependent 

• # lines of code executed     Problem: lines of diff. complexity 

• # of simple operations performed  
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Size of input instance? 

Formally: Size 𝑛 is number of bits to represent instance 
 

 

But we can work with anything reasonable 
 

reasonable = within a constant factor of number of bits 



Ex 1: 

  

 

 

• # of bits: 17 bits 

• # of digits: 5 digits 

• Value: 83920 

 

Size of input instance 

83920 

- Formal 

- Reasonable: #bits and #digits are 

always within constant factor 

≈ log2 10 ≈ 3.32 



Ex 1: 

  

 

 

• # of bits: 17 bits 

• # of digits: 5 digits 

• Value: 83920 

 

Size of input instance 

83920 

- Formal 

- Reasonable 

- Not reasonable: ≈ 2#bits, much bigger 



Ex 2: 

 

 
 

 

• # of elements = 10 

11 

Size of input instance 

14,23,25,30,31,52,62,79,88,98 

10 

Is this reasonable? 



Ex 2: 

 

 
 

 

• # of elements = 10 

12 

Size of input instance 

14,23,25,30,31,52,62,79,88,98 

10 

- Reasonable: if each number is stored 

into, say, into a 32-bit word, total 

number of bits is  

                 #bits = 32 * #elements  



Time complexity is a function 

Time complexity is a function: Specifies how the running time 

depends on the size of the input 

 

Function mapping  

 

 

# of bits 𝑛 to represent input 
 

 

# of basic operations 𝑇(𝑛) executed by the algorithm 
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Which input of size n? 

Q: There are 2n inputs of size n. Which do we consider 

for the time complexity T(n)? 

 

 

 

 

Worst-case running time. Consider the instance where the 

algorithm uses largest number of basic operations 

 

• Generally captures efficiency in practice 

• Pessimistic view, but hard to find better measure 

Worst instance 



Time complexity  

We reach our final definition of time complexity: 

 

 

 

T(n) = number of basic operations the algorithm takes over the worst 

instance of bit-size n 

input size n 

complexity 

T(n) 



Example 1 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 ≈ 2𝑛 + 1 

 

• Input A of bit-size n has n entries 

• ≈ 2 simple operations per step of for, +1 for “x=20” 

 

(ignoring extra operations that make up the For) 
 

 

  
Func Algorithm 1(A)   #A is array of bits 
 

x=20 

For i=1...len(A) 

 x=3x 

 

 



Example 2 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 ≈ 5𝑛 − 99 
 

• Input A of bit-size n has n entries 

• +1 for initialization “x=1” 

• … ≈ 2+1 per iterations of for in the first 50 iterations 

• … ≈ 2+1+2 per iterations of for in the other 50 iterations 

(assuming 𝑛 ≥ 50) 

 
 

 

Func Algorithm 2(A)            #A is array of bits 

x=1   

For i=1...len(A) 

   x=x+1 

   If x>50 then 

      x=x+3 

   End If 

End For 



Example 3 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 ≈ (𝑛/32)  
 

• A of bit-size n has n/32 numbers 

• ≈ 1 simple operations per iteration of for 
 

Point: Understand input size 

 

Func Algorithm 3(A)        #A is array of 32-bit numbers 

   For i=1 to len(A) 

        print “oi”   

 



Example 4 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 ≈ (𝑛/32)  +  1 

 

• Worst instance: the only “10” is in the last position  

• A of bit-size n has n/32 numbers 

• ≈ 1 simple operations per for, +1 for Return 
 

Point: Complexity of algo is always about the worst instance 

 

Func Find10(A)              #A is array of 32-bit numbers 

   For i=1 to len(A) 

        If A[i]==10 

            Return i  

 



2.2  Asymptotic Order of Growth 



Asymptotic Order of Growth 

Motivation: Determining the exact time complexity T(n) of a real 

algorithm is very hard and often does not make much sense 
 

 

In particular, can we say that an algorithm with complexity  

   T(n) = 10n  

will run slower than and algorithm with complexity  

   T(n) = 9n+6? 
 
 

No; for example, maybe the opertions in the first algorithm are 

slightly faster then in the second  

(e.g., addition vs. multiplication) 
 

 

But as we will see, for large instances there is a difference 

between ≈ 𝑛 and ≈ 𝑛2  
(e.g., ≈ 1.000 vs ≈ 1.000.000) 



Asymptotic Order of Growth 

We will focus on the asymptotic order of growth of the 

complexity T(n) 
 

 

So T(n)=30𝑛2 + 10  will become T(n)= 𝜃 𝑛2  
 

 

We just want to differentiate T(n)= 
         

          ~𝑛2         vs      ~n       vs      ~n log n       vs   ~2𝑛  .... 
 

 



Asymptotic Order of Growth 

Actually, to compute the asymptotic order of growth of 

T(n) we will compute upper and lower bounds for T(n): 

 
Ex:   T(n) grows at most (not faster) like 𝑛2 

        T(n) grows at least like 𝑛2 

 

T(n) grows just like 𝑛2   



24 

Asymptotic Order of Growth: Upper Bounds 

Upper bounds   

 

Informal: T(n) is O(f(n)) if T(n) grows with at most the same 
order of magnitude as f(n) grows 
 

 

 

T(n) is O(f(n)) T(n) is O(f(n)) 

both grow at same 

order of magnitude 



Asymptotic Order of Growth: Upper Bounds 

Upper bounds   

 

Formal: T(n) is O(f(n)) if there exist a constant 𝑐 ≥ 0  such 
that for all 𝑛 ≥ 1 we have  
 
 
   T(n)  c · f(n). 
 

 

 

Equivalent: T(n) is O(f(n)) if there exists c  0 such that 
 

  

 

 
c

nf

nT

n


 )(

)(
lim
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Asymptotic Order of Growth: Upper Bounds 

 

Exercise 1: T(n) = 32n2 + 17n + 32. 

 

Say if T(n) is: 

 O(n2) ?   

 O(n3) ?  

 O(n) ? 

 

 

 



Asymptotic Order of Growth: Upper Bounds 

Exercise 1: T(n) = 32n2 + 17n + 32. 

 

Say if T(n) is: 

 O(n2) ?  Yes  

 O(n3) ?  Yes 

 O(n) ?   No 

 

Solution: To show that T(n) is O(n2) we can: 

 Use the first definition with c = 1000 

 Use limits: lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32, which is a constant 
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Asymptotic Order of Growth: Upper Bounds 

 

Exercise 2: 

 

 T(n) = 2n+1, is it O(2n) ?  
 

 T(n) = 22n , is it O(2n) ?  
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Asymptotic Order of Growth: Upper Bounds 

 

Exercise 2: 

 

 T(n) = 2n+1, is it O(2n) ? Yes 
 

 T(n) = 22n , is it O(2n) ? No 

 

 

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

2𝑛 = lim
𝑛→∞

2𝑛 = ∞  is not constant 

 

 

Solution 2 (second item): To have 22n <  c.2n  we need c>2n. So c 

is not a constant 

 

 

 

 

 



Upper Bounds Involving log/exp 

Logarithms.  log a n is  O(log b n) for any constants a, b > 0 
 

 

 

Logarithms.  For every x > 0,  log n  is O(nx) 
 

 

 

Exponentials.  For every r > 1 and every d > 0,  nd é  O(rn) 
 

 

every exponential grows faster than every polynomial 

can avoid specifying the 
base 

log grows slower than every polynomial 



Upper Bounds Involving log/exp 

Exercise: is T(n) = 21*n*log n 

• O(𝑛2) ?  

• O(𝑛1.1) ? 

• O(𝑛) ?  



Upper Bounds Involving log/exp 

Exercise: is T(n) = 21*n*log n 

• O(𝑛2) ?  Yes 

• O(𝑛1.1) ?  Yes 

• O(𝑛) ?  No 

 

Solution (first item): Comparing 21*n*log n  vs.  n2 is the same as 

comparing 21*log n  vs.  n, and we know log n grows slower 

than n 

 

 

Solution 2 (first item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = lim
𝑛→∞

21log 𝑛

𝑛
, which is at most a 

constant since log n grows slower than n 



Lower Bounds 

 

Informal: T(n) is (f(n)) if T(n) grows with at least the same order 

of magnitude as f(n) grows 

 

 

 

 

 

 

Formal: T(n) is (f(n)) if there exist constants c > 0 such that for 

all n we have T(n)  c · f(n). 

 

 

Equivalent: T(n) is (f(n)) if there exist constant c>0 

 

 

 
c

nf

nT

n


 )(

)(
lim



Tight Bounds 

Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)) 

 

 

     T(n) grows at most as fast as f(n)         T(n) is O(f(n))  

     T(n) grows at least as fast as f(n)          T(n) is Ω(f(n)) 

 

 

 
T(n) grows just like f(n)                         T(n) is Θ(f(n)) 
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Lower and Tight Bounds 

 

Exercise:   T(n) = 32n2 + 17n + 32 

Is T(n): 

 

 (n) ? 

 (n2) ? 

 (n2) ? 

 

 (n3) ? 

 (n) ? 

 (n3) ? 

 

 

 

 



Lower and Tight Bounds 

 

Exercise:   T(n) = 32n2 + 17n + 32 

Is T(n): 

 

 (n) ? Yes 

 (n2) ?  Yes 

 (n2) ?  Yes 

 

 (n3) ?  No 

 (n) ?  No 

 (n3) ?  No 

 

Solution (second item): lim
𝑛→∞

𝑇(𝑛)

𝑛2 = 32  is constant > 0 

 

Solution 2 (second item): To show T(n) is Ω(𝑛2) use c = 1 

 



Back to algorithms 

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 = Θ(𝑛) 

 

• Just notice/remember 𝑇 𝑛 ≈ 2𝑛 + 1 

 

 

 

 
 

 

  
Func Algorithm 1(A)   #A is array of bits 
 

x=20 

For i=1...len(A) 

 x=3x 

 

 



Back to algorithms 

Q: What is asymptotic time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 = Θ(𝑛) 

 

• Input A of bit-size n has n entries, so n iterations of for 

• The algorithm makes at most 10n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛) 

• The algorithm makes at least n operations ⇒ 𝑇(𝑛) is Ω(𝑛) 

• So 𝑇 𝑛 = Θ(𝑛) 

 

 

 
 

 

  
Func Algorithm 1(A)   #A is array of bits 
 

x=20 

For i=1...len(A) 

 x=3x 

 

 



Back to algorithms 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 = Θ 𝑛  
 

• Remember need to look at worst instance to get T(n) 

• Notice/remember that 𝑇 𝑛 ≈ (𝑛/32)  +  1 

Func Find10(A)              #A is array of 32-bit numbers 

   For i=1 to len(A) 

        If A[i]==10 

            Return i  

 



Back to algorithms 

Q: What is the time complexity 𝑇(𝑛) of this algorithm? 

A: 𝑇 𝑛 = Θ 𝑛  
 

• Remember need to look at worst instance to get T(n) 

• Worst instance: the only “10” is in the last position  

• A of bit-size n has n/32 numbers 

• The algorithm makes at most 5n operations ⇒ 𝑇(𝑛) is 𝑂(𝑛) 

• The algorithm makes at least n operations (remember worst 

instance) ⇒ 𝑇(𝑛) is Ω(𝑛) 

• So 𝑇 𝑛 = Θ(𝑛) 

 

 

Func Find10(A)              #A is array of 32-bit numbers 

   For i=1 to len(A) 

        If A[i]==10 

            Return i  
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inputs of size n 

for algorithm A 

(cartoon) 

Can we say that the time complexity of A is? 

• O(𝑛2) ?  

• Ω(𝑛2) ?  

• Ω (n) ?  

• O (n) ?  

• Ω ( n3/2) ? 

 

    . n log n 

 n 

 n 

 n 

 

 n 

n 

 n log n 

3/2 

3/2 

Back to algorithms 
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inputs of size n 

for algorithm A 

(cartoon) 

Can we say that the time complexity of A is? 

• O(𝑛2) ? Yes, beccause largest complexity of algorithm is at most 𝑛2 

• Ω(𝑛2) ? No, there is no input where the complexity of the  algorithm has 

  order 𝑛2 

• Ω (n) ? Yes 

• O (n) ? No, there are inputs where complexity has larger order 

• Ω ( n3/2) ? Yes 

 

    . n log n 

 n 

 n 

 n 

 

 n 

n 

 n log n 

3/2 

3/2 

Back to algorithms 



What does asymptotic analysis give us? 

Does not tell that exact constants in the time-complexity of an algo 
 

Does give a good basis of comparison between algorithms 

• Even if optimize implementation of Θ 𝑛2  algorithm and make it 10x 

faster, it is probably much slower than a “bad” implementation of a 

Θ 𝑛  algorithm (for large instances) 



2.4  A Survey of Common Running Times 
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Linear Time:  O(n) 

Linear time.  Running time is at most a constant factor times the size of 

the input.  

 

Computing the maximum.  Compute maximum of n numbers a1, …, an. 

 

 

 

 

 

 

 

 

 

Remark.  For all instances the algorithm executes a linear number of 

operations 

max  a1 
for i = 2 to n { 

   if (ai > max) 

      max  ai 
} 
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Linear Time:  O(n) 

Linear time.  Running time is at most a constant factor times the size of 

the input.  

 

Finding an item x in a list.  Test if x is in the list a1, …, an 

 

 

 

 

 

 

 

 

 

Remark.  For some instances the algorithm is sublinear (e.g. x in the 

first position) 

Exist  false 

for i = 1 to n { 

   if (ai== x) 

      Exist  true 

      break  

  

} 



50 

Linear Time:  O(n) 

Merge.  Combine two sorted lists A = a1,a2,…,ak with B = b1,b2,…,bk  

(increasing order) into sorted whole. 

 

 

 

 

 

 

 

 

 

 

 

 

Claim.  Merging two lists of size k takes O(n) time (n=total size=2k). 

Pf.  After each comparison, the length of output list increases by 1. 

i = 1, j = 1 

while (I <= |A| and j <= |B|) { 

   if (ai  bj) append ai to output list and increment i 

   else(ai  bj)append bj to output list and increment j 
} 

append remainder of nonempty list to output list 
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O(n log n) Time 

O(n log n) time.  Arises in divide-and-conquer algorithms. 

 

 

Sorting.  Mergesort and heapsort are sorting algorithms that perform 

O(n log n) comparisons. 

 

Largest empty interval.  Given n time-stamps x1, …, xn on which copies 

of a file arrive at a server, what is largest interval of time when no 

copies of the file arrive? 

 

O(n log n) solution.  Sort the time-stamps.  Scan the sorted list in 

order, identifying the maximum gap between successive time-stamps. 



Quadratic Time:  O(n2) 

Quadratic time.  Enumerate all pairs of elements. 

 

Closest pair of points.  Given a list of n points in the plane (x1, y1), …, 

(xn, yn), find the distance of the closest pair. 

 

O(n2) solution.  Try all pairs of points. 

 

 

 

 

 

 

 

 

 

Remark.  (n2) seems inevitable, but this is just an illusion 

min  sqrt((x1 - x2)
2 + (y1 - y2)

2) 

for i = 1 to n-1 { 

   for j = i+1 to n { 

      d  sqrt((xi - xj)
2 + (yi - yj)

2) 

      if (d < min) 

         min  d 

   } 

} 
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Cubic Time:  O(n3) 

Cubic time.  Enumerate all triples of elements. 

 

Set disjointness.  Let  S1, …, Sn be subsets of {1, 2, …, n}. Is there a 

disjoint pair of sets? 

 

Set Representation.  Assume that each set is represented as an 

incidence vector. 

 

 n=8 and S={2,3,6}, S is represented by (0,1,1,0,0,1,0,0) 

      

 n=8 and S={1,4}, S is represented by (1,0,0,1,0,0,0,0) 

    

 



Algorithm:  

For i=1...n-1 

 For j=i+1...n 

          If Disjoint(i, j) 

  Return ‘There are disjoint sets’ 

          End If  

 End For 

End For 

Return ‘There are no disjoint sets’ 

 

Disjoint(i, j): 

k1 

While k<=n  

      If Si(k)=Sj(k)=1 Return False 

      k++  

End While 

Return True 
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1. A complexidade de tempo do algoritmo é O(n3)?   

 

 

 

 

2. A complexidade de tempo do algoritmo é Ω(n3) ? 

 

 

Cubic Time:  O(n3) 
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1. A complexidade de tempo do algoritmo é O(n3)? SIM 

 

 

 

 

2. A complexidade de tempo do algoritmo é Ω(n3) ? SIM 

 

“Bad” instance: all sets are equal to {n} => algoritm makes Ω(n3) basic 

operations 

 

 

Cubic Time:  O(n3) 
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Exponential Time 

Independent set.  Given a graph, find the largest independent set? 

 

O(n2 2n) solution.  Enumerate all subsets. 

 

 

 

 

 

 

 

S*   

foreach subset S of nodes { 

   check whether S in an independent set 

   if (S is largest independent set seen so far) 

      update S*  S 

   } 

} 



Polynomial Time 

Polynomial time.  Running time is O(nd) for some constant d 

independent of the input size n. 

 

Ex: T(n) = 32𝑛2   and   T(n)= n log n    are polynomial time 

 

 

We consider an algorithm efficient if time-complexity is polynomial 

 

 

 

 

 

 

 

efficient 
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Complexity of Algorithm vs Complexity of Problem 

There are many different algorithms for solving the same problem 

 

 

Showing that an algorithm is Ω(n3) does not mean that we cannot find 

another algorithm that solves this problem faster, say in O(𝑛2) 



Exercises 

Solucao: O algoritmo é Θ(𝑛 log 𝑛) 

Analise a complexidade de pior caso do algoritmo abaixo. Ou seja, 

encontre uma funcao 𝑓(𝑛) tal que 𝑇 𝑛 = Θ 𝑓 𝑛 . Justifique. 

cst*n 

cst*n 

cst 

log(n) iterations * [cst*n  per iteration]  

= cst*n*log(n) 
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Exercícios Kleinberg & Tardos, cap 2 da lista de exercícios 

 

 

 

 

Exercises 
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Exercises 

Exercício 1. Considere um algoritmo que recebe um número real x e o 

vetor (a0,a1,…,an-1) como entrada e devolve  

a0 + a1x + … + an-1x
n-1 

 

 

a) Desenvolva um algoritmo para resolver este problema que execute 

em tempo quadrático. Faça a análise do algoritmo 

 

 

b) Desenvolva um algoritmo para resolver este problema que execute 

em tempo linear. Faça a análise do algoritmo 
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Exercises 

a)  

 sum = 0 

 Para i= 0 até n-1 faça 

  aux  ai 

  Para j:=1 até i 

   aux  x . aux 

  Fim Para 

  sum  sum + aux 

Fim Para 

Devolva sum 

 

 Análise 

Número de operações elementares é igual a 

 

1+2+3+ … + n-1 = n(n-1)/2 = O(n2) 
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Exercises 

b)  

 sum = a0 

 pot = 1 

 Para i= 1 até n-1 faça 

  pot  x.pot 

  sum  sum + ai.pot 

  Fim Para  

  Devolva sum 

 

 Análise 

A cada loop são realizadas O(1) operações elementares. Logo, o 

tempo  é linear 

 

 

 

 

 

 

 



2.5 A First Analysis of a Recursive Algorithm: 

Binary Search 



Problem: Given a sorted list of numbers (increasing order) a1,…an, 

decide if number x is in the list 

Binary Search 

Function bin_search(i,j, x) 

   if i = j 

      if a_i = x return TRUE 

      else return FALSE 

   end if 

 

   mid = floor((i+j)/2) 

   if x = a_mid 

      return TRUE 

   else if x < a_mid 

      return bin_search(i, mid-1, x) 

   else if x > a_mid 

      return bin_search(mid+1, j, x) 

   end if 

Function bin_search_main(x) 

   bin_search(1,n, x) 

7   10  14  17 

 1    2    3    5    7   10  14  17 

Ex: x=14  

14  17 



Binary Search Analysis 

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2
 

    

 

 

 

 

 

 

we will always ignore floor/ceiling 
 
 

(the “sorting” slides has one slide that keeps the 
ceiling, so you can see that it works) 



Binary Search Analysis 

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2
 

    

Claim: The time complexity T(n) of binary search is at most c*log n 

 

Proof 1: T(n) ≤ c + T(n/2) ≤ c + c + T(n/4) ≤  ....  ≤  c + c + ... + c 

 
log n terms 

T(n) 

T(n/2) 

T(n/4) 

T(2) 

c 

c 

c 

. . . 

log2n 

 c log2n 

. . . 

c 



Binary Search Analysis 

Binary search recurrence:       𝑇 𝑛 ≤ 𝑐 +  𝑇
𝑛

2
 

    

Claim: The time complexity T(n) of binary search is at most c*log n 

 

 

Proof 2: (induction) Base case: n=1 

 

Now suppose that for n’ ≤ n – 1, 𝑇 𝑛’ ≤ 𝑐 ∗ log (𝑛’) 

 

Then T(n) ≤ c + T(n/2) ≤ c + c*log(n/2) = c + c*(log n – 1) = c*log n 

 



Recursive Algorithms 

Exercício 2. Projete um algoritmo (recursivo) que receba como entrada 

um numero real x e um inteiro positivo n e devolva xn.   O algoritmo 

deve executar O(log n) somas e multiplicações 

 

 

 

 

 



Recursive Algorithms 
 

Proc  Pot(x,n) 

         Se n=0 return 1  

         Se n=1 return x 

         Se n é par 

 tmpPot(x,n/2) 

 Return tmp*tmp 

         Senão n é ímpar 

 tmpPot(x,(n-1)/2) 

  Return x*tmp*tmp 

         Fim Se  

Fim 

 

Análise: 

 T(n)= c+ T(n/2)  =>  T(n) é O(log n) 

   


