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ABSTRACT 

[Context] Several static analysis tools allow the development of 

custom rules for locating application-specific defects. Although 

this feature is powerful and commonly available, it is not well 

explored in practice. Custom static analysis rules can check design 

and policies that are shared between applications, allowing the 

reuse of rules. However, the benefits, scope, and concerns that 

software engineers should have on reusing custom static analysis 

rules are unknown. [Goal] In this preliminary study, we investigate 

the reuse of custom static analysis rules produced by applying 

Pattern-Driven Maintenance (PDM). PDM is a method to locate 

defect patterns in web applications that produces custom static 

analysis rules as output. [Method] We selected a set of rules 

produced by a previous usage of the PDM method and applied them 

to other three applications in two contexts, within the same 

company where the rules were produced, and in other companies. 

[Results] We successfully reused some rules in both scenarios with 

minor adjustments, finding new defects to be fixed. The reuse of 

rules could discard from 58-90% of source code locations found by 

a naive search for the defects, reducing verification effort. 

However, the reused rules need adjustments to improve precision 

for defect localization, as precision ranged from 40-75%. Finally, 

we identified factors that have an impact on reusing custom rules. 

[Conclusions] We put forward that reusing customized static 

analysis rules can be beneficial, in particular when similarities in 

the architecture and programming style are observed. However, 

adjustment of the rules might be needed to enable effective reuse. 

We shared our insights and methodology on how to reuse custom 

static analysis rules properly.   
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1 Introduction 

Static analysis is commonly used for locating defects [1], [2]. 

General-purpose static analyzers that search for defects in source 

code are called Linters [3]. Although Linters can find a myriad of 

defects, they check only defects associated with the inadequate use 

of a programming language or the use of error-prone constructions. 

They do not find application-specific defects by default.  

Several static analysis tools [4]–[6] allow the development of 

custom rules, enabling practitioners to search for application-

specific defects statically. In a survey with developers, one third of 

them agreed that useful rules are related to a specific context, such 

as a particular project [7]. Although custom rules are useful and 

commonly available, they are not well explored in practice [8], [9]. 

Less than 5% of the static analysis rules used in open source 

projects are custom rules [8]. Furthermore, only 8% of developers 

reported using custom rules in practice [9].  

One way to improve the usage of custom static analysis rules is 

by reusing them. Custom static analysis rules can check design 

decisions and policies, such as exception handling policies and 

architectural decisions, which could be shared between applications 

[10], [11]. In this way, custom rules can be reused, thus allowing to 

scale up their benefits. However, there is limited research on 

reusing custom static analysis rules [10], [11]. Hence, the benefits, 

scope, and concerns that software engineers should have on reusing 

custom static analysis rules are still unknown. 

In this preliminary study, we investigate the reuse of custom 

static analysis rules created in the context of Pattern-Driven 

Maintenance (PDM), a method to produce rules that precisely 

locate defect patterns in web applications. We selected a set of rules 

previously produced by applying PDM in practice to an industrial 

web application [12] and investigate their reuse in other three web 

applications. We used a practical approach for reuse, i.e., by 
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adjusting rules when necessary within practical scenarios with 

limited effort and complexity. We consider two contexts: outside 

of the scope of the company where they were produced (cross-

company), and within the same company where they were 

produced (within-company). During this investigation, we aim at 

answering the following three research questions: 

RQ1. (sensitivity) In which scope can custom rules be reused? 

RQ2. (effect) What are the benefits and effort of reusing custom 

rules? 

RQ3. (sensitivity) Which factors have an impact on reusing 

custom rules? 

We successfully reused some rules in both scenarios with minor 

adjustments (described in detail throughout the paper), finding new 

defects to be fixed. The reuse of rules could discard from 58-90% 

of source code locations found by a naive search for the defects, 

reducing verification costs. However, the precision of rules for 

defect localization still needs improvements, having ranged from 

40-75%. Finally, we observed that architecture and programming 

style played an essential role when reusing static analysis rules. 

Therefore, we recommend reusing customized static analysis rules, 

as long as architecture and programming style similarities are 

observed. Nevertheless, we emphasize that the precision and recall 

of the rules should be evaluated so that they can be improved for 

the new specific usage context. We shared our insights and 

methodology on how to reuse custom static analysis rules properly. 

The remainder of this paper is organized as follows. Section 2 

presents PDM and the rules created in its previous application as a 

background. Section 3 shows the methodology used in the reuse 

investigation. Section 4 presents the results found for our cross-

company and within-company investigation scenarios. Section 5 

discusses the research questions based on the results. Section 6 

describes the threats to validity and how they were mitigated. 

Section 7 presents related work. Finally, concluding remarks are 

provided in Section 8. 

2 Background 

In this section, we explain the custom static analysis rules involved 

in our work and Pattern-Driven Maintenance (PDM), which was 

the method used to produce them. The description of PDM was first 

published by Mendonça et al. [12]. A summary description is 

included in this section to provide the background for 

understanding our investigation. 

 

2.1 PDM Method 

PDM is a method designed to produce custom static analysis 

rules that precisely locate defect patterns in existent web 

applications. As PDM was designed to be applicable to legacy 

systems, it does not require software documentation as input. 

Instead, PDM receives web server logs and application source code 

as inputs. Furthermore, PDM can be adapted to receive any other 

data source of failures that identify a specific line of code where the 

failure occurred, such as an issue report.  

Figure 1 shows the activities of PDM collapsed into steps along 

with the control flow of the method. Two primary paths can be 

observed: the maintenance path (steps 1, 2, and 3) and the defect 

pattern improvement cycle (steps 4, 5, and 2). Execution of the 

maintenance path occurs when the web server error logs, or other 

sources of failures, contain new records. The selected source of 

failures must be monitored periodically to identify those new 

records.  

The maintenance path includes activities to process failures 

data and identify defect patterns (step 1), developing custom static 

analysis rules to detect the latent defects (step 2), i.e., defects that 

were not exercised yet, not having produced a failure, and testing 

the identified instances and correcting the defects (step 3).  

The defect pattern improvement cycle is performed when the 

evaluation of the rules (step 4) (e.g., based on precision and recall) 

does not reach acceptable levels to alert during development. The 

recommended level of precision of rules is at least 80%, for being 

well accepted by developers [9] and stable to be used [13]. The 

ideal level of recall is 100%, i.e., no defect is missed by the rule (no 

false negatives) since false negative affects the confidence that the 

tool can find defects [13]. PDM prioritizes recall over precision by 

design, starting with 100% of recall for a rule and move forward, 

improving precision in each improvement cycle. When precision or 

recall levels are not acceptable, the source code of false positives 

(or false negatives) is analyzed to improve the static analysis rule 

(step 5). Finally, there are two exit steps in the exit path of the 

method – rule deployment for defect alerting (step 6) and rule 

contingency (step 7) –, which includes using the rules and patterns 

only in a limited way. Futher details of the seven depicted steps can 

be found in Mendonça et al. [12]. 

 

 

Figure 1: The PDM method [12] 

 

 

 

 



Table 1: Defect Patterns Identified in Python/Django case [12] 

Defect 

Pattern 

Name 

Description  Defect Code Example Fixed Code Example 

Django ORM 

get 

The application does not catch the 

exceptions thrown when a database 

search is conducted by id using 

Django ORM (Object-Relational-

Mapper), and the id does not exist in 

the database. 

django.db.models import Model 

class Account(Model): 

    … 

... 

account =  

         Account.objects.get(id=id) 

... 

 

try: 

    account =  

            

Account.objects.get(id=id) 

except: 

   #handle the exception 

Float 

Conversion 

The application does not catch the 

exceptions thrown when a string is 

converted to float. 

a = “217x" 

b = float(a) 

try: 

    b = float(a) 

except:  

    #handle the exception 

 

Date 

Conversion 

The application does not catch the 

exceptions thrown when it converts a 

string to date. 

from datetime import datetime 

a = datetime.strptime(\ 

     '10/10/201a',’%d/%m/%Y') 

try: 

    a = datetime.strptime(\ 

          '10/10/201a', '%d/%m/%Y') 

except: 

   #handle the exception 

Table 2: Defect Patterns Identified in PHP case [12] 

Defect 

Pattern 

Name 

Description  Defect Code Example Fixed Code Example 

Date 

Conversion 

A date conversion returns 

false when it fails. When 

a member function is 

called in a Boolean an 

exception is thrown.  

$dt1 =  

\DateTimeImmutable::createFromFormat( 

'd/m/Y', $str1); 

$dt1 = $dt1->sub(new DateInterval('P1D')); 

… 

if(!$dt1){ 

… 

} 

$dt1 = $dt1->sub(new DateInterval('P1D')); 

Unchecked 

Integer 

Data Access Object 

(DAO) layer may throw 

an exception when a non-

validated integer variable 

is passed as parameter to 

their member functions.  

$res = $someDao->someMethod($int_var); if (strval($int_var) != 

     strval(intval($int_var))){ 

     … 

} 

$res = $someDao->someMethod($int_var); 

Unchecked Id Data Access Object 

(DAO) layer may throw 

an exception when a non-

validated identifier 

variable is passed as 

parameter to their 

member functions. 

$res = $someDao->someMethod($id_var); if (!isset($id_var) || 

     empty($id_var) ||  

     !is_numeric($id_var)){ 

     … 

} 

$res = $someDao->someMethod($id_var); 

 

 

2.2 Custom Rules 
 

In this subsection, we briefly explain the cases were PDM was 

applied before. Those applications of the method produced the 

custom static analysis rules that were subjects for reuse.  

In the first case, PDM was applied to a financial web 

application marketed as a software-as-a-service (SaaS) in Brazil 

since 2010. Although this software has been in use for eight years 

and a significant part of its defects had already been fixed, it was 

still being evolved, under active maintenance, and eventually 

presenting failures. Some of these failures were caused by errors of 

use of the service; however, the application should not raise 

unhandled exceptions in those situations. 
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The server-side of the application had 12 KLOC developed in 

Python with the Django Framework running on Apache HTTP 

Server. Table 1 presents the defect patterns that were identified in 

this application. SonarQube was being used to control the code 

quality of the software under study; therefore, it was selected as the 

static analysis tool for the method application. For each defect 

pattern was implemented a custom static analysis rules using 

SonarQube XPath plugin for custom rules in Python written 

software. PDM was used to improve the precision of rules 

achieving the level presented in Table 3. The relative recall [12] 

(see section 3.2) of all custom rules derived from the first 

application reached the level of 100% [12].  

Figure 2 presents a simplified version of Django ORM Get 

Rule being executed in SonarQube SSLR Toolkit, an development 

environment that allow write and debug a rule in XPATH. In Figure 

2, the source code under evaluation is presented in the left pane 

wheather its AST is presented in the right panel and the XPath rule 

in the botton one. In this simplified version, the rule uses method 

name (get) as well as the structure of the instruction, i.e., the use of 

two dot operators, to identify a call to the method not surrounded 

by a try/catch block. Notice that the class identifier is not fixed by 

the rule. As get method is from Django Framework, it would be 

usefull to reuse this rule for other software. 

The second PDM application was a small-sized administrative 

web application of an educational institution, written in PHP. The 

failures caused by unhandled exceptions in this application were 

extracted from the web server logs. Table 2 presents the defect 

patterns identified [12]. This time the rules were programmed in 

Java instead of XPath since SonarQube’s support for PHP custom 

rules is only available in Java. The precision of those rules is 

presented in Table 3. The relative recall of PHP rules was not 

evaluated since PDM was applied in a practical way, i.e., adjusting 

the rule for discarding false positives as soon as they are found [12]. 

Details of how PDM was applied to derive those rules can be found 

in Mendonça et al. [12]. 

Figure 3 presents a part of Unckecked Id PHP rule that checks 

whether a variable is inside a validation block, i.e., an try/catch or 

specific if instruction (see Table 2 for details of PHP rules). The 

source code of the rule give us some intuition about its reusability. 

Notice that specific part of the rules are fixed as string literals inside 

the rule source code. Adicionally, the structures verified by the rule 

code, i.e., if and try/catch blocks may be different in other software, 

such as ternady operator. For this reason, parts of the rule may need 

to be adjusted when reusing it. In other hand, the method presented 

in Figure3 is quite generic allowing those fixed parts to be modified 

with few effort.  

Althought the source code of rules give us insights about its 

reusability, experimentation is necessary to have more concrete 

conclusions. The methodology used in our experimentation is 

presented in the next section. 

Table 3: Precision of rules in their original application 

Custom Rule Language Precision 

Django ORM Get Python/Django 68% 

Date Conversion Python/Django 59% 

Float Conversion Python/Django 67% 

Date Conversion PHP 100% 

Unchecked Integer PHP 100% 

Unchecked Id PHP 89.5% 

 

 

 
Figure 2: A simplified version of Django ORM Get rule in SonarQube SSLR Toolkit 

 



 
Figure 3: Part of Unchecked Id PHP rule that verifies whether 

a variable is inside a validation block 

3 Methodology 

In order to assess the reusability of custom static analysis rules, we 

conducted a proof of concept by appling the rules explained in the 

previous section to similar projects. In this study, we aim to answer 

the following research questions: 

RQ1. (sensitivity) In which scope custom rules can be reused? 

RQ2. (effect) What are the benefits and effort of reusing custom 

rules? 

RQ3. (sensitivity) Which factors have an impact on reusing 

custom rules? 

In the next three subsections, we explain the software selection for 

our reuse investigation, the metrics used, and the process for 

reusing the rules. 

 

3.1 Software Selection 

As observed during rules’ creation [12], the architecture of the 

applications plays an essential role in the definition of custom rules. 

                                                                 
1 https://github.com/diogosmendonca/CADD 
2 http://www.cefet-rj.br 

Therefore, we informally expect custom rules produced in one 

software to be reusable in other software with similar architecture. 

As the intention of our study was to get the very first insights about 

reusing custom static analysis rules, we selected few projects and 

performed an in-depth analysis of reusing rules on them. An 

alternative approach could be sending pull requests for many open 

source projects asking for acceptance. However, as we previously 

did not know the precision and recall of reusing those rules, this 

approach was not appropriate since it could generate several false 

positives and vex project maintainers. Table 4 presentes a summary 

of software selected for reusing rules. Hereafter, we explain how 

those software were selected. 

The first set of rules is for Python/Django written web 

applications, while the second is rules for PHP applications [12]. 

As Django is a popular framework that defines its reference 

architecture, we were able to find software projects with a similar 

architecture beyond the frontier of the company where the 

Python/Django rules were produced. Hence, we were able to 

conduct cross-company rule reuse evaluations for the rules created 

for Python/Django. In the case of the rules created for PHP, the 

architecture of the software used to produce the rules was specific 

and defined by the company. Therefore, we conducted a within-

company rule reuse evaluation for these rules. 

The software selection for the cross-company evaluation 

considered both, the use of similar technologies and the maturity of 

the project. We selected two software projects for the cross-

company evaluation. The first one was an information system for 

undergraduate student’s performance monitoring named CADD1 

(Student Performance Evaluation Commissions Support System). 

The server-side of the application had 4.8 KLOC written in 

Python/Django. The CADD system was developed over a one-year 

period by two CEFET/RJ2 undergraduate students as a final course 

project. The testing of the CADD system was performed ad-hoc, 

without using a systematic procedure. The system tests presented 

several defects, thus reflecting a low level of maturity.  

The second cross-company project was an open-source agile 

project management software named Taiga3. Taiga back-end4 had 

30 KLOC written in Python/Django within a history of four years 

of releases. This project is actively maintained and has over a 

thousand forks and five thousand stars on Github. Hence, we 

considered that Taiga had a higher level of software maturity than 

the CADD system. 

As previously mentioned, the architecture of the software used 

to produce the second set of rules was defined by the company, and 

software with similar architecture was available for evaluation only 

within that company. Hence, we performed a within-company 

reuse evaluation for the PHP rules.  

The software selected for within-company rules reuse 

evaluation was a 1.7 KLOC PHP written application with 

architecture similar to the software that originated the PHP rules. 

This application was recently developed over a four months period 

by three developers. Its purpose was to help the employees of the 

company to register themselves in the new corporative email 

3 https://taiga.io/ 
4 https://github.com/taigaio/taiga-back 
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system. Hereafter we refer to this application as Registration 

system. 

Table 4: Software selected for reuse of rules 

Software Technology Size 

(KLOC) 

License Type 

Registration  PHP 1.7  Proprietary 

CADD  Python/Django 4.8 Open Source 

Taiga Python/Django 30 Open Source 

 

 

3.2 Reuse Process 

The reuse of rules may affect their precision and recall. In this way, 

to properly reuse custom static analysis rules, a systematic 

approach to verify their precision and relative recall [12] is needed. 

However, for precise verification of both metrics, an extensive 

inspection of the software to which the rules are to be applied may 

be required, thus hindering possible effort reduction benefits of 

reusing rules. For solving these conflicting requirements, we 

propose the following four-step process to reuse rules and to 

perform their verification.   

1. Produce and run a relaxed version of the rule for locating 

defect candidates. This relaxed version must be broader 

than the original rule, ideally finding all possible locations 

in which the defects to be found can be present. For 

example, if a rule searches for a possible defect in a 

specific function call, a relaxed version of the rule could be 

one finding all calls of this function. This step can be 

supported by using regular expressions or an IDE’s search 

feature. The intend of this relaxed version is to prevent rule 

overfitting by verifing the rule against false negatives, an 

activity that is covered in step 3.  

2. Run the custom static analysis rule on the new software to 

be verified.   

3. Start to inspect the negative cases, i.e., the defect 

candidates found in step 1 but not alerted by the rule 

executed in step 2. If a false negative is found, stop the 

inspection, modify the rule to also alert the false negative 

case found, and go back to step 2. When no false negative 

is found, the relative recall is 100% and we can move 

forward for precision verification in step 4. In step 3, the 

number of inspection points might be high. To reduce the 

inspection effort, depending on the confidence that a rule 

engineer has on the rule, she may choose to inspect a 

sample of the negative cases to confirm whether the rule 

has false negatives, or even to not inspect them. However, 

such an approach does not allow to calculate the relative 

recall and introduces the risk of having false negatives.  

4. Inspect the alerts produced by the rule for calculating its 

precision.  

 

The proposed process intends to delimitate the inspection 

scope, reduce the inspection effort, and to assure a relative recall of 

100% in the reused rules. The inspection scope is limited by the 

relaxed version of the rule produced in step 1. The iterative and 

incremental nature of the process aims to reduce the inspection 

effort by eliminating defect candidates when eagerly changing the 

rule during the process. If the developer correctly implemented the 

changes in the rule to remove false negatives, the relative recall will 

achieve 100% by design. Finally, after applying the reuse process, 

the precision improvement of a rule can be performed by applying 

PDM’s improvement cycles [12]. 

 

3.3 Metrics 

Table 5: Metrics used in the reuse of rules evaluation. 

Precision 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑
 

Relative 

Recall 

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑟𝑢𝑙𝑒
 

Inspection 

Reduction 

Potential  

1 −
𝐴𝑙𝑒𝑟𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒

𝐴𝑙𝑒𝑟𝑡𝑠 𝑜𝑓 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑟𝑢𝑙𝑒
 

 

To answer our research questions, we used the set of metrics 

presented in Table 5. It is noteworthy that the recall is relative to 

the defects matching the intended rule [12]. Those are located by 

inspecting or testing the candidate defects retrieved by the relaxed 

version of the rule. This version should be broad enough to retrieve 

all defects but might include false positives. We introduce a new 

metric called inspection reduction potential, which measures the 

percentage of inspection points that in the future could be avoided 

from being inspected by reusing the rule. The inspection reduction 

potential metric assumes that the ratio between negative cases 

discarded and alerts found during the reuse of a rule will be 

maintained in the future. In this way, the negative cases will not be 

inspected anymore. The inspection reduction potential measures 

the potential benefit of reusing a rule, considering the alternative as 

searching for the defects using a relaxed rule version (e.g., an IDE’s 

search feature) and inspecting retrieved instances manually. 

4 Results 

In this section, we present the results of reusing a set of rules in two 

different contexts, cross-company and within-company.  

4.1 Cross-company rules reuse evaluation 

In this subsection, we explain the two cross-company rule reuse 

evaluations, i.e., evaluations on reusing the rules beyond the 

context of the company in which they were created. The first case 

concerns a software system from a different company, and the 

second one concerns an open-source software system. For these 

evaluations, we used the Python/Django rules implemented to 

reveal the defect patterns shown in Table 1. 4.1.1 CADD system 
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As evaluation procedure for the reuse of Python/Django rules, we 

executed them for the CADD system and tested the alerts produced 

for defect confirmation. The relaxed versions of rules were defined 

to find the function calls present in each pattern presented in Table 

1. Table 5 presents the results of applying the reused rules. Further 

details on how those rules were produced can be found in [12]. 

The CADD system did not have any float or strptime function 

calls, thus float conversion and date conversion rules were not 

applicable. Regarding the Django ORM get rule, we found 64 

instances of the get function call. All function calls not alerted by 

the rule were inspected for confirming that the static analysis rule 

works correctly. After confirming a relative recall of 100%, the 

calculated inspection reduction effort was 62.5% (see Table 5).  

The function calls alerted by Django ORM get pattern were 

tested for defect confirmation. The precision level of 75% found is 

slightly superior to the precision found in the software in which the 

rule was produced (68%). We inspected the false positives of the 

CADD system for causal analysis and found similar contexts 

causing the pattern to fail from the ones in the software which 

originated the rule. As observed during the elaboration of the rules 

[12], this precision could have been further improved by using a 

tool with more resources for rule programming than SonarQube. 

The level of precision found (75%), and the number of defects 

discovered in the software (18) strengthen our confidence that 

custom rules may be reused in a cross-company setup to find 

defects in less mature software and to reduce future efforts of 

inspection. With the intent to help researchers and practitioners to 

better understand and check our results, we made the artifacts used 

in our evaluation available online 5.  

4.1.2 Taiga 

Taiga is a 30 KLOC, Python/Django written software with several 

installations and users. We chose Taiga to evaluate rule reuse in a 

more mature software than the CADD system. 

As the evaluation procedure, we also executed the same 

Python/Django rules on Taiga, excluding automated tests and 

migrations (database creation scripts) from the analysis. We also 

searched for the function calls present in the rules for checking if 

the rules were working correctly. Table 5 presents the number of 

function calls and alerts found. After inspecting approximately 

50% of the alerts without finding any defects, we found three new 

fixing alternatives that properly prevent the false positive defect 

candidates alerted by the Django ORM get rule. Those contexts are 

explained in Table 6. 

After finding these contexts, we realized that a new PDM defect 

pattern improvement cycle would have to be performed to reuse 

Django ORM get rule in Taiga effectively. As some of these 

contexts could be very complicated or even impossible to include 

in the Django ORM get rule using SonarQube (Figure 2 presents a 

simplified version of this rule) we decided not to perform the 

improvement cycle. Furthermore, the effort to continue inspecting 

Taiga without an expectation of executing an improvement cycle 

of the rule would not be worthwhile for the study purpose. Thus, 

                                                                 
5 https://github.com/diogosmendonca/CADD/issues/1 

we decided not to continue inspecting Taiga and finished the 

evaluation. 

We conclude from the Taiga evaluation that custom rules may 

not be reusable in other software without adaptation, even when 

both software systems use the same framework or reference 

architecture. Programming style and architecture could be different 

from one software to the other, and the execution of a PDM defect 

pattern improvement cycles may be needed. Furthermore, as also 

observed in the CADD system, the use of previously defined 

custom rule may reduce the effort of checking a system for a 

specific defect. In the case of Taiga, the Django ORM get rule 

execution enabled to reduce the inspection effort, discarding the 

need of inspecting 81 out of the 139 ORM get function calls, 

representing inspection reduction potential of 58% (naive estimate 

considering all function calls to require the same effort). The not 

inspected function calls represents the ones discarded by rule. We 

had confidence not to inspect those function calls since Django 

ORM Get rule was successfully applied before in two software 

systems with 100% of relative recall. 

4.2 Within-company rules reuse evaluation 

 

As an evaluation procedure, we started by executing the three 

previously PHP rules, produced to reveal the patterns shown in 

Table 2, without any modification on the Registration system. In 

the first execution, no defect candidate was found by the rules. With 

the intent of verifying this result, with the aid of an IDE, we 

searched in the source code for the elements contained in each 

defect pattern. We did not find any createFromFormat function call 

or integer variables being passed to the DAO layer, which were the 

elements of two of the rules (date conversion and the unchecked 

integer patterns, respectively). However, we have found many id 

variables being passed to the DAO layer, which are the elements of 

the remaining rule (unchecked id). The rule was not able to find 

those function calls because the naming convention for the DAO 

instance variables (architectural relevant element) changed from 

the original system to the Registration system. Tarhus the rule was 

adjusted to reflect the new naming convention, and was again 

executed against the Registration system. Table 5 presents the 

results of the adjusted rule execution and inspection together with 

the total number of all function calls. 

The adjusted unchecked id rule found five defect candidates in 

a total of 50 function calls, which represents an inspection 

reduction potential of 90%. We inspected the alerts produced, and 

two of them were confirmed as defects, thus reflecting a precision 

of rule of 40%. Although this precision is low, the company 

decided to use the rules in its production environment for the 

Registration system. This decision was influenced by the positive 

result obtained in the first experiment with those rules, which 

strengthened the confidence of the company practitioners that the 

rules are useful for finding defects. Additionally, the low absolute 

number of false positives (three) associated with the functionality 
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of SonarQube of marking false positive alerts not to be shown 

within the developer’s IDE made the effect of false positives 

irrelevant for the developers.  

We conclude from the Registration system evaluation that it is 

possible to reuse custom rules in a within-company environment. 

We also found that the adoption of the rules, in this case, was 

influenced by the previous experience of the company with the 

rules and that the precision may have had low influence on this 

decision. 

5 Discussion 

In this section, we discuss each research question based on the 

results of our study. 

RQ1. (sensitivity) In which scope can custom rules be reused? 

Our evaluations indicate that custom rules might be reused in other 

software in within-company and cross-company environments. 

Table 5 shows a summary of our quantitative results. The defects 

found showed a potential positive reuse effect of custom rules on 

web application reliability. This potential can be achieved not only 

in the maintenance and evolution phases but also in the software 

development phase. The CADD system was developed recently 

and, at the time of the writing of this document, it was not in 

production. The reuse of custom rules produced based on other 

software helped to identify several defects in the CADD system 

before it was released to its customers.   

 

RQ2. (effect) What are the benefits and effort of reusing custom 

rules? 

The beneficial effects of the reuse of custom rules are finding 

defects and reducing the number of defect candidates for verifying 

a defect pattern in other software. Table 5 presents our results. The 

precision of reused rules ranged from 40-75% without 

compromising the relative recall of 100%, in the cases for which 

this metric was measured. The inspection reduction potential for 

verification ranged from 58-90% in our studies, which might 

represent a significant effort reduction in verifying the presence of 

a defect pattern in a software system.  

The effort of the overall approach for reusing rules depends on 

the project and how the reuse of rules is applied. The worst case 

was found in Taiga evaluation. Despite the fact that reusing rules 

could discard 58% of the alerts, the remaining 42% (58 alerts) 

would still need to be inspected. During the inspection of the alerts 

the recommendation for reducing its effort is to, as soon as a new 

context, i.e., a new structure that avoids the defect, is found the 

static analysis rule should be modified to discard all instances of it 

at once. However, in Taiga we found some contexts that are 

extremely difficult to include in static analysis rules, thus we 

needed to manually inspect the remaining alerts (we took a part-

time week inspecting and stopped because of time constraints). The 

effort in this case (worst one) is proportional to the effort of 

inspecting remaining alerts and modifying the rule after applying 

it. 

On the other hand, there are cases in which reusing a rule is 

very simple and straightforward. In the Registration system, 90% 

of the alerts were discarded remaining only 5 to be inspected. A 

simple adjustment of naming convention was done in the rule. The 

rule was successfully reused in a few hours (less than 4 hours). We 

found 2 defects, guaranteeing that in the software there is no other 

similar defect and introduced an automated verification against 

reinfection with this effort. In all cases, the relaxed version of the 

rule used was an IDE search, which is quite fast to produce, i.e., 

produced in minutes. 

 

RQ3. (sensitivity) Which factors have an impact on reusing custom 

rules? 

We found some influence factors for custom rules reuse and 

adoption. First, architecture plays an essential role in rules 

definitions and, consequently, in its reuse. Architectural elements 

such as naming convetions and use of layers were relevant for reuse 

of rules. However, architecture similarity is not enough for rule 

reuse. As we observed in the Taiga and Registration systems, 

differences in the way that architecture is implemented and 

programming style might cause rules not to work correctly. Hence, 

the adjustment of the rules might be needed to enable effective 

reuse. An influence factor for reused rules adoption in a within-

company environment is the success of rules in finding defects on 

other software. Indeed, the influence of this factor overcame the 

low precision of rules achieved in the Registration system, and the 

company chose to deploy the rule for defect prevention. 

 

Table 5: Evaluation of reused rules 

System Type of 

Reuse 

Technology Rule Function 

Calls 

(relaxed 

rule) 

Alerts 

produced 

by the 

rule 

Defects 

found 

Precision Relative 

Recall 

Inspection 

Reduction 

Potential 

CADD Cross-

company 

Python/ 

Django 

Django 

ORM Get  

64 24 18 75% 100% 62.5% 

Taiga Cross-

company 

Python/ 

Django 

Django 

ORM Get  

139 58 0 N/A N/A 58% 

Registration Within-

company 

PHP Unchecked 

Id 

50 5 2 40% N/A 90% 
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Table 6: New contexts found for Django ORM get rule in Taiga 

Context Description Code Example 

The use of pk to access an identifier attribute passed 

to get method instead of an id attribute 

User.objects.get(id=otherObject.pk) 

Id validation using a validator and inheritance.  

ProjectExistsValidator checks if the project exists 

and is called through inheritance on 

DueDatesCreationValidator is_valid method.  

class ProjectExistsValidator: 

    def validate_project_id(self, attrs, source): 

        … 

 

Class DueDatesCreationValidator( 

           ProjectExistsValidator, validators.Validator): 

    project_id = serializers.IntegerField() 

     … 

 

validator = validators.DueDatesCreationValidator( 

data=request.DATA, context=context) 

         

if not validator.is_valid(): 

           return response.BadRequest(validator.errors) 

 

project_id = request.DATA.get('project_id') 

project = models.Project.objects.get(id=project_id) 

 

Constant as a literal or attribute. class BaseEventHook: 

    platform = "Unknown" 

    … 

    def get_user(self, user_id, platform): 

     … 

        user = get_user_model().objects.get( 

                  is_system=True,  

                  username__startswith=platform) 

 

6 Threats to Validity 

Internal Validity. The verifications of the results produced by the 

rules were conducted by a single researcher. However, the artifacts 

used in CADD system evaluation are available online5, allowing 

the investigations to be replicated by others to confirm the obtained 

results. Regarding the artifacts of the Registration System and 

Taiga, they were not publicly released. The Registration System is 

proprietary, and its artifacts could not be released. In the case of 

Taiga, the artifacts were not produced with evidence (print 

screens), as they were produced in the CADD System, so we 

decided not to publish them. Additionally, the partial inspection of 

defect candidates, with the purpose of verifying the correctly 

working of a rule during its reuse might have caused missing false 

negatives. Inspecting all defect candidates discarded by a rule in 

some cases may not be a practical solution for confirming if it is 

working correctly. One of the expected benefits of reuse of rules is 

reducing the effort of inspection, and by inspecting all defect 

candidates this benefit would be achieved only in the future after 

reusing the rule. 

 

Construct Validity. We selected the software systems for the study 

by convenience. For instance, the selection of software that was 

developed by students, who have a novice level of experience in 

software development, might have influenced the evaluation of the 

reusability of the rules. It is noteworthy that the defects detected by 

the patterns in our study are more commonly introduced by novice 

developers than by experienced ones. 

 

Conclusion Validity. The amount of systems chosen for evaluation 

does not allow applying any more sophisticated statistical 

techniques. Instead of claiming for conclusion validity, we 

addressed the research questions using a qualitative approach, 

trying to gather an initial understanding of the reuse scope, effects, 

and factors. 

External Validity. We recognize that the evaluations and 

results presented in this section are only examples of the reuse of 

rules produced by applying PDM. The quantitative results achieved 

cannot be extrapolated for any software other than the ones in 

which the evaluations were performed. Thus, our findings should 

be interpreted as preliminary results from a specific context. 

7 Related Work 

In this section, we review other works on the reuse of static analysis 

rules.  

Shekhovtsov et al. [10] proposed a conceptual model to trace 

back static analysis rules to design decisions. In this way, the reuse 

of rules could occur by identifying similar design decisions, shared 

between applications, to then select the rules to be reused. Despite 

the conceptual model, the authors do not provide any experimental 

results of its application.  

There is research on reusing static analysis between DSLs [16] 

and between languages [17], working at a higher level of 

abstraction for reuse. Our work differs from them in its purpose. 

Instead of aiming cross-language reuse, our study aims to evaluate 

the practical reuse of custom rules in other projects with the same 

programming language. In this way, we try to reuse the rules as 

they were developed, evaluate them and make adjustments if 

needed.  
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Gurgel et al. [11] proposed a DSL called TamDera that allows 

the reuse of static analysis rules in an object-oriented way, i.e., by 

extending an existent rule. TamDera was designed with the purpose 

of checking architecture against architectural drift and erosion 

symptoms. The reuse of TamDera written rules was verified in an 

experiment involving 21 versions pertaining to 5 software projects, 

and more than 600 rules. The authors were able to reuse 72% of the 

rules; however, the precision of reused rules was not provided, 

neither measures of the possible benefits of reusing those rules, 

such as reduction of the number of inspection points.   

To the best of our knowledge, our study is the first to report the 

precision and relative recall when reusing custom static analysis 

rules. We also introduced and are the first to measure the reduction 

inspection potential caused by the reuse of custom rules. The 

measures and experiments performed used tools that are commonly 

available and extensively used in industry, such as SonarQube[4], 

being a practical approach for reuse and allowing other researchers 

to replicate our studies in different contexts. 

8 Concluding Remarks 

We found that custom static analysis rules can be reused in within- 

or cross-company environments and not only for software in the 

maintenance phase but also recently developed ones. We were able 

to find defects in other software by reusing custom rules, as well as 

to reduce the verification effort of defect patterns. Nevertheless, the 

architecture and programming style played an essential role in 

successfully reusing custom static analysis rules, thus being an 

influencing factor for reuse. Our work also would help developers 

to identify cases were the rules would not be reusable and to avoid 

them. 

In this way, the reuse of rules has the advantage of potentially 

producing more robust rules and reducing the effort of identifying 

similar patterns in other systems. We also observed that previous 

successful experience with custom rules might influence rule reuse 

adoption. 

Based on our experience, we recommend some practices for the 

evaluation and implementation of reusing custom rules. After 

executing a rule in another software, our advice is to inspect both, 

the alerts produced and other potential defect candidates that were 

not alerted. The inspection of the former might show new contexts 

to include in the rule to avoid false positives, and the latter might 

present adjustable cases where the rules fail because of differences 

in the architecture implementation or programming style. After 

inspecting these cases, fully or incrementally, the rules can be 

adjusted and executed to identify defects. Furthermore, additional 

PDM defect rule improvement cycles can also be performed to 

improve the precision of the rules if needed. 
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