
Towards Pratical Reuse of Custom Static Analysis Rules

for Defect Localization

Diogo S. Mendonça
 Federal Center for Technological Education of Rio de

Janeiro (CEFET/RJ)

diogo.mendonca@cefet-rj.br

Marcos Kalinowski
Pontifical Catholic University of Rio de Janeiro

(PUC-Rio)

 kalinowski@inf.puc-rio.br

ABSTRACT

[Context] Several static analysis tools allow the development of

custom rules for locating application-specific defects. Although

this feature is powerful and commonly available, it is not well

explored in practice. Custom static analysis rules can check design

and policies that are shared between applications, allowing the

reuse of rules. However, the benefits, scope, and concerns that

software engineers should have on reusing custom static analysis

rules are unknown. [Goal] In this preliminary study, we investigate

the reuse of custom static analysis rules produced by applying

Pattern-Driven Maintenance (PDM). PDM is a method to locate

defect patterns in web applications that produces custom static

analysis rules as output. [Method] We selected a set of rules

produced by a previous usage of the PDM method and applied them

to other three applications in two contexts, within the same

company where the rules were produced, and in other companies.

[Results] We successfully reused some rules in both scenarios with

minor adjustments, finding new defects to be fixed. The reuse of

rules could discard from 58-90% of source code locations found by

a naive search for the defects, reducing verification effort.

However, the reused rules need adjustments to improve precision

for defect localization, as precision ranged from 40-75%. Finally,

we identified factors that have an impact on reusing custom rules.

[Conclusions] We put forward that reusing customized static

analysis rules can be beneficial, in particular when similarities in

the architecture and programming style are observed. However,

adjustment of the rules might be needed to enable effective reuse.

We shared our insights and methodology on how to reuse custom

static analysis rules properly.

CCS CONCEPTS

• Insert CCS text here • Insert CCS text here

KEYWORDS

Custom static analysis rules, reuse, pattern-driven maintenance

ACM Reference format:

Diogo Mendonça and Marcos Kalinowski. 2020. Toward Practical Reuse

of custom static analysis rules for defect localization. In Proceedings of

Simpósio Brasileiro de Qualidade de Software (SBQS’20). ACM, São Luís,

MA, Brazil, 10 pages.

1 Introduction

Static analysis is commonly used for locating defects [1], [2].

General-purpose static analyzers that search for defects in source

code are called Linters [3]. Although Linters can find a myriad of

defects, they check only defects associated with the inadequate use

of a programming language or the use of error-prone constructions.

They do not find application-specific defects by default.

Several static analysis tools [4]–[6] allow the development of

custom rules, enabling practitioners to search for application-

specific defects statically. In a survey with developers, one third of

them agreed that useful rules are related to a specific context, such

as a particular project [7]. Although custom rules are useful and

commonly available, they are not well explored in practice [8], [9].

Less than 5% of the static analysis rules used in open source

projects are custom rules [8]. Furthermore, only 8% of developers

reported using custom rules in practice [9].

One way to improve the usage of custom static analysis rules is

by reusing them. Custom static analysis rules can check design

decisions and policies, such as exception handling policies and

architectural decisions, which could be shared between applications

[10], [11]. In this way, custom rules can be reused, thus allowing to

scale up their benefits. However, there is limited research on

reusing custom static analysis rules [10], [11]. Hence, the benefits,

scope, and concerns that software engineers should have on reusing

custom static analysis rules are still unknown.

In this preliminary study, we investigate the reuse of custom

static analysis rules created in the context of Pattern-Driven

Maintenance (PDM), a method to produce rules that precisely

locate defect patterns in web applications. We selected a set of rules

previously produced by applying PDM in practice to an industrial

web application [12] and investigate their reuse in other three web

applications. We used a practical approach for reuse, i.e., by

SBQS’20, December 2020, São Luís, MA Brazil Mendonça and Kalinowski

adjusting rules when necessary within practical scenarios with

limited effort and complexity. We consider two contexts: outside

of the scope of the company where they were produced (cross-

company), and within the same company where they were

produced (within-company). During this investigation, we aim at

answering the following three research questions:

RQ1. (sensitivity) In which scope can custom rules be reused?

RQ2. (effect) What are the benefits and effort of reusing custom

rules?

RQ3. (sensitivity) Which factors have an impact on reusing

custom rules?

We successfully reused some rules in both scenarios with minor

adjustments (described in detail throughout the paper), finding new

defects to be fixed. The reuse of rules could discard from 58-90%

of source code locations found by a naive search for the defects,

reducing verification costs. However, the precision of rules for

defect localization still needs improvements, having ranged from

40-75%. Finally, we observed that architecture and programming

style played an essential role when reusing static analysis rules.

Therefore, we recommend reusing customized static analysis rules,

as long as architecture and programming style similarities are

observed. Nevertheless, we emphasize that the precision and recall

of the rules should be evaluated so that they can be improved for

the new specific usage context. We shared our insights and

methodology on how to reuse custom static analysis rules properly.

The remainder of this paper is organized as follows. Section 2

presents PDM and the rules created in its previous application as a

background. Section 3 shows the methodology used in the reuse

investigation. Section 4 presents the results found for our cross-

company and within-company investigation scenarios. Section 5

discusses the research questions based on the results. Section 6

describes the threats to validity and how they were mitigated.

Section 7 presents related work. Finally, concluding remarks are

provided in Section 8.

2 Background

In this section, we explain the custom static analysis rules involved

in our work and Pattern-Driven Maintenance (PDM), which was

the method used to produce them. The description of PDM was first

published by Mendonça et al. [12]. A summary description is

included in this section to provide the background for

understanding our investigation.

2.1 PDM Method

PDM is a method designed to produce custom static analysis

rules that precisely locate defect patterns in existent web

applications. As PDM was designed to be applicable to legacy

systems, it does not require software documentation as input.

Instead, PDM receives web server logs and application source code

as inputs. Furthermore, PDM can be adapted to receive any other

data source of failures that identify a specific line of code where the

failure occurred, such as an issue report.

Figure 1 shows the activities of PDM collapsed into steps along

with the control flow of the method. Two primary paths can be

observed: the maintenance path (steps 1, 2, and 3) and the defect

pattern improvement cycle (steps 4, 5, and 2). Execution of the

maintenance path occurs when the web server error logs, or other

sources of failures, contain new records. The selected source of

failures must be monitored periodically to identify those new

records.

The maintenance path includes activities to process failures

data and identify defect patterns (step 1), developing custom static

analysis rules to detect the latent defects (step 2), i.e., defects that

were not exercised yet, not having produced a failure, and testing

the identified instances and correcting the defects (step 3).

The defect pattern improvement cycle is performed when the

evaluation of the rules (step 4) (e.g., based on precision and recall)

does not reach acceptable levels to alert during development. The

recommended level of precision of rules is at least 80%, for being

well accepted by developers [9] and stable to be used [13]. The

ideal level of recall is 100%, i.e., no defect is missed by the rule (no

false negatives) since false negative affects the confidence that the

tool can find defects [13]. PDM prioritizes recall over precision by

design, starting with 100% of recall for a rule and move forward,

improving precision in each improvement cycle. When precision or

recall levels are not acceptable, the source code of false positives

(or false negatives) is analyzed to improve the static analysis rule

(step 5). Finally, there are two exit steps in the exit path of the

method – rule deployment for defect alerting (step 6) and rule

contingency (step 7) –, which includes using the rules and patterns

only in a limited way. Futher details of the seven depicted steps can

be found in Mendonça et al. [12].

Figure 1: The PDM method [12]

Table 1: Defect Patterns Identified in Python/Django case [12]

Defect

Pattern

Name

Description Defect Code Example Fixed Code Example

Django ORM

get

The application does not catch the

exceptions thrown when a database

search is conducted by id using

Django ORM (Object-Relational-

Mapper), and the id does not exist in

the database.

django.db.models import Model

class Account(Model):

 …

...

account =

 Account.objects.get(id=id)

...

try:

 account =

Account.objects.get(id=id)

except:

 #handle the exception

Float

Conversion

The application does not catch the

exceptions thrown when a string is

converted to float.

a = “217x"

b = float(a)

try:

 b = float(a)

except:

 #handle the exception

Date

Conversion

The application does not catch the

exceptions thrown when it converts a

string to date.

from datetime import datetime

a = datetime.strptime(\

 '10/10/201a',’%d/%m/%Y')

try:

 a = datetime.strptime(\

 '10/10/201a', '%d/%m/%Y')

except:

 #handle the exception

Table 2: Defect Patterns Identified in PHP case [12]

Defect

Pattern

Name

Description Defect Code Example Fixed Code Example

Date

Conversion

A date conversion returns

false when it fails. When

a member function is

called in a Boolean an

exception is thrown.

$dt1 =

\DateTimeImmutable::createFromFormat(

'd/m/Y', $str1);

$dt1 = $dt1->sub(new DateInterval('P1D'));

…

if(!$dt1){

…

}

$dt1 = $dt1->sub(new DateInterval('P1D'));

Unchecked

Integer

Data Access Object

(DAO) layer may throw

an exception when a non-

validated integer variable

is passed as parameter to

their member functions.

$res = $someDao->someMethod($int_var); if (strval($int_var) !=

 strval(intval($int_var))){

 …

}

$res = $someDao->someMethod($int_var);

Unchecked Id Data Access Object

(DAO) layer may throw

an exception when a non-

validated identifier

variable is passed as

parameter to their

member functions.

$res = $someDao->someMethod($id_var); if (!isset($id_var) ||

 empty($id_var) ||

 !is_numeric($id_var)){

 …

}

$res = $someDao->someMethod($id_var);

2.2 Custom Rules

In this subsection, we briefly explain the cases were PDM was

applied before. Those applications of the method produced the

custom static analysis rules that were subjects for reuse.

In the first case, PDM was applied to a financial web

application marketed as a software-as-a-service (SaaS) in Brazil

since 2010. Although this software has been in use for eight years

and a significant part of its defects had already been fixed, it was

still being evolved, under active maintenance, and eventually

presenting failures. Some of these failures were caused by errors of

use of the service; however, the application should not raise

unhandled exceptions in those situations.

SBQS’20, December 2020, São Luís, MA Brazil Mendonça and Kalinowski

The server-side of the application had 12 KLOC developed in

Python with the Django Framework running on Apache HTTP

Server. Table 1 presents the defect patterns that were identified in

this application. SonarQube was being used to control the code

quality of the software under study; therefore, it was selected as the

static analysis tool for the method application. For each defect

pattern was implemented a custom static analysis rules using

SonarQube XPath plugin for custom rules in Python written

software. PDM was used to improve the precision of rules

achieving the level presented in Table 3. The relative recall [12]

(see section 3.2) of all custom rules derived from the first

application reached the level of 100% [12].

Figure 2 presents a simplified version of Django ORM Get

Rule being executed in SonarQube SSLR Toolkit, an development

environment that allow write and debug a rule in XPATH. In Figure

2, the source code under evaluation is presented in the left pane

wheather its AST is presented in the right panel and the XPath rule

in the botton one. In this simplified version, the rule uses method

name (get) as well as the structure of the instruction, i.e., the use of

two dot operators, to identify a call to the method not surrounded

by a try/catch block. Notice that the class identifier is not fixed by

the rule. As get method is from Django Framework, it would be

usefull to reuse this rule for other software.

The second PDM application was a small-sized administrative

web application of an educational institution, written in PHP. The

failures caused by unhandled exceptions in this application were

extracted from the web server logs. Table 2 presents the defect

patterns identified [12]. This time the rules were programmed in

Java instead of XPath since SonarQube’s support for PHP custom

rules is only available in Java. The precision of those rules is

presented in Table 3. The relative recall of PHP rules was not

evaluated since PDM was applied in a practical way, i.e., adjusting

the rule for discarding false positives as soon as they are found [12].

Details of how PDM was applied to derive those rules can be found

in Mendonça et al. [12].

Figure 3 presents a part of Unckecked Id PHP rule that checks

whether a variable is inside a validation block, i.e., an try/catch or

specific if instruction (see Table 2 for details of PHP rules). The

source code of the rule give us some intuition about its reusability.

Notice that specific part of the rules are fixed as string literals inside

the rule source code. Adicionally, the structures verified by the rule

code, i.e., if and try/catch blocks may be different in other software,

such as ternady operator. For this reason, parts of the rule may need

to be adjusted when reusing it. In other hand, the method presented

in Figure3 is quite generic allowing those fixed parts to be modified

with few effort.

Althought the source code of rules give us insights about its

reusability, experimentation is necessary to have more concrete

conclusions. The methodology used in our experimentation is

presented in the next section.

Table 3: Precision of rules in their original application

Custom Rule Language Precision

Django ORM Get Python/Django 68%

Date Conversion Python/Django 59%

Float Conversion Python/Django 67%

Date Conversion PHP 100%

Unchecked Integer PHP 100%

Unchecked Id PHP 89.5%

Figure 2: A simplified version of Django ORM Get rule in SonarQube SSLR Toolkit

Figure 3: Part of Unchecked Id PHP rule that verifies whether

a variable is inside a validation block

3 Methodology

In order to assess the reusability of custom static analysis rules, we

conducted a proof of concept by appling the rules explained in the

previous section to similar projects. In this study, we aim to answer

the following research questions:

RQ1. (sensitivity) In which scope custom rules can be reused?

RQ2. (effect) What are the benefits and effort of reusing custom

rules?

RQ3. (sensitivity) Which factors have an impact on reusing

custom rules?

In the next three subsections, we explain the software selection for

our reuse investigation, the metrics used, and the process for

reusing the rules.

3.1 Software Selection

As observed during rules’ creation [12], the architecture of the

applications plays an essential role in the definition of custom rules.

1 https://github.com/diogosmendonca/CADD
2 http://www.cefet-rj.br

Therefore, we informally expect custom rules produced in one

software to be reusable in other software with similar architecture.

As the intention of our study was to get the very first insights about

reusing custom static analysis rules, we selected few projects and

performed an in-depth analysis of reusing rules on them. An

alternative approach could be sending pull requests for many open

source projects asking for acceptance. However, as we previously

did not know the precision and recall of reusing those rules, this

approach was not appropriate since it could generate several false

positives and vex project maintainers. Table 4 presentes a summary

of software selected for reusing rules. Hereafter, we explain how

those software were selected.

The first set of rules is for Python/Django written web

applications, while the second is rules for PHP applications [12].

As Django is a popular framework that defines its reference

architecture, we were able to find software projects with a similar

architecture beyond the frontier of the company where the

Python/Django rules were produced. Hence, we were able to

conduct cross-company rule reuse evaluations for the rules created

for Python/Django. In the case of the rules created for PHP, the

architecture of the software used to produce the rules was specific

and defined by the company. Therefore, we conducted a within-

company rule reuse evaluation for these rules.

The software selection for the cross-company evaluation

considered both, the use of similar technologies and the maturity of

the project. We selected two software projects for the cross-

company evaluation. The first one was an information system for

undergraduate student’s performance monitoring named CADD1

(Student Performance Evaluation Commissions Support System).

The server-side of the application had 4.8 KLOC written in

Python/Django. The CADD system was developed over a one-year

period by two CEFET/RJ2 undergraduate students as a final course

project. The testing of the CADD system was performed ad-hoc,

without using a systematic procedure. The system tests presented

several defects, thus reflecting a low level of maturity.

The second cross-company project was an open-source agile

project management software named Taiga3. Taiga back-end4 had

30 KLOC written in Python/Django within a history of four years

of releases. This project is actively maintained and has over a

thousand forks and five thousand stars on Github. Hence, we

considered that Taiga had a higher level of software maturity than

the CADD system.

As previously mentioned, the architecture of the software used

to produce the second set of rules was defined by the company, and

software with similar architecture was available for evaluation only

within that company. Hence, we performed a within-company

reuse evaluation for the PHP rules.

The software selected for within-company rules reuse

evaluation was a 1.7 KLOC PHP written application with

architecture similar to the software that originated the PHP rules.

This application was recently developed over a four months period

by three developers. Its purpose was to help the employees of the

company to register themselves in the new corporative email

3 https://taiga.io/
4 https://github.com/taigaio/taiga-back

SBQS’20, December 2020, São Luís, MA Brazil Mendonça and Kalinowski

system. Hereafter we refer to this application as Registration

system.

Table 4: Software selected for reuse of rules

Software Technology Size

(KLOC)

License Type

Registration PHP 1.7 Proprietary

CADD Python/Django 4.8 Open Source

Taiga Python/Django 30 Open Source

3.2 Reuse Process

The reuse of rules may affect their precision and recall. In this way,

to properly reuse custom static analysis rules, a systematic

approach to verify their precision and relative recall [12] is needed.

However, for precise verification of both metrics, an extensive

inspection of the software to which the rules are to be applied may

be required, thus hindering possible effort reduction benefits of

reusing rules. For solving these conflicting requirements, we

propose the following four-step process to reuse rules and to

perform their verification.

1. Produce and run a relaxed version of the rule for locating

defect candidates. This relaxed version must be broader

than the original rule, ideally finding all possible locations

in which the defects to be found can be present. For

example, if a rule searches for a possible defect in a

specific function call, a relaxed version of the rule could be

one finding all calls of this function. This step can be

supported by using regular expressions or an IDE’s search

feature. The intend of this relaxed version is to prevent rule

overfitting by verifing the rule against false negatives, an

activity that is covered in step 3.

2. Run the custom static analysis rule on the new software to

be verified.

3. Start to inspect the negative cases, i.e., the defect

candidates found in step 1 but not alerted by the rule

executed in step 2. If a false negative is found, stop the

inspection, modify the rule to also alert the false negative

case found, and go back to step 2. When no false negative

is found, the relative recall is 100% and we can move

forward for precision verification in step 4. In step 3, the

number of inspection points might be high. To reduce the

inspection effort, depending on the confidence that a rule

engineer has on the rule, she may choose to inspect a

sample of the negative cases to confirm whether the rule

has false negatives, or even to not inspect them. However,

such an approach does not allow to calculate the relative

recall and introduces the risk of having false negatives.

4. Inspect the alerts produced by the rule for calculating its

precision.

The proposed process intends to delimitate the inspection

scope, reduce the inspection effort, and to assure a relative recall of

100% in the reused rules. The inspection scope is limited by the

relaxed version of the rule produced in step 1. The iterative and

incremental nature of the process aims to reduce the inspection

effort by eliminating defect candidates when eagerly changing the

rule during the process. If the developer correctly implemented the

changes in the rule to remove false negatives, the relative recall will

achieve 100% by design. Finally, after applying the reuse process,

the precision improvement of a rule can be performed by applying

PDM’s improvement cycles [12].

3.3 Metrics

Table 5: Metrics used in the reuse of rules evaluation.

Precision 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑

Relative

Recall

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑙𝑒𝑟𝑡𝑒𝑑

𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑟𝑢𝑙𝑒

Inspection

Reduction

Potential

1 −
𝐴𝑙𝑒𝑟𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒

𝐴𝑙𝑒𝑟𝑡𝑠 𝑜𝑓 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑟𝑢𝑙𝑒

To answer our research questions, we used the set of metrics

presented in Table 5. It is noteworthy that the recall is relative to

the defects matching the intended rule [12]. Those are located by

inspecting or testing the candidate defects retrieved by the relaxed

version of the rule. This version should be broad enough to retrieve

all defects but might include false positives. We introduce a new

metric called inspection reduction potential, which measures the

percentage of inspection points that in the future could be avoided

from being inspected by reusing the rule. The inspection reduction

potential metric assumes that the ratio between negative cases

discarded and alerts found during the reuse of a rule will be

maintained in the future. In this way, the negative cases will not be

inspected anymore. The inspection reduction potential measures

the potential benefit of reusing a rule, considering the alternative as

searching for the defects using a relaxed rule version (e.g., an IDE’s

search feature) and inspecting retrieved instances manually.

4 Results

In this section, we present the results of reusing a set of rules in two

different contexts, cross-company and within-company.

4.1 Cross-company rules reuse evaluation

In this subsection, we explain the two cross-company rule reuse

evaluations, i.e., evaluations on reusing the rules beyond the

context of the company in which they were created. The first case

concerns a software system from a different company, and the

second one concerns an open-source software system. For these

evaluations, we used the Python/Django rules implemented to

reveal the defect patterns shown in Table 1. 4.1.1 CADD system

Toward practical reuse of custom static analysis rules for defect

localization
SBQS’20, December 2020, São Luís, MA Brazil

As evaluation procedure for the reuse of Python/Django rules, we

executed them for the CADD system and tested the alerts produced

for defect confirmation. The relaxed versions of rules were defined

to find the function calls present in each pattern presented in Table

1. Table 5 presents the results of applying the reused rules. Further

details on how those rules were produced can be found in [12].

The CADD system did not have any float or strptime function

calls, thus float conversion and date conversion rules were not

applicable. Regarding the Django ORM get rule, we found 64

instances of the get function call. All function calls not alerted by

the rule were inspected for confirming that the static analysis rule

works correctly. After confirming a relative recall of 100%, the

calculated inspection reduction effort was 62.5% (see Table 5).

The function calls alerted by Django ORM get pattern were

tested for defect confirmation. The precision level of 75% found is

slightly superior to the precision found in the software in which the

rule was produced (68%). We inspected the false positives of the

CADD system for causal analysis and found similar contexts

causing the pattern to fail from the ones in the software which

originated the rule. As observed during the elaboration of the rules

[12], this precision could have been further improved by using a

tool with more resources for rule programming than SonarQube.

The level of precision found (75%), and the number of defects

discovered in the software (18) strengthen our confidence that

custom rules may be reused in a cross-company setup to find

defects in less mature software and to reduce future efforts of

inspection. With the intent to help researchers and practitioners to

better understand and check our results, we made the artifacts used

in our evaluation available online 5.

4.1.2 Taiga

Taiga is a 30 KLOC, Python/Django written software with several

installations and users. We chose Taiga to evaluate rule reuse in a

more mature software than the CADD system.

As the evaluation procedure, we also executed the same

Python/Django rules on Taiga, excluding automated tests and

migrations (database creation scripts) from the analysis. We also

searched for the function calls present in the rules for checking if

the rules were working correctly. Table 5 presents the number of

function calls and alerts found. After inspecting approximately

50% of the alerts without finding any defects, we found three new

fixing alternatives that properly prevent the false positive defect

candidates alerted by the Django ORM get rule. Those contexts are

explained in Table 6.

After finding these contexts, we realized that a new PDM defect

pattern improvement cycle would have to be performed to reuse

Django ORM get rule in Taiga effectively. As some of these

contexts could be very complicated or even impossible to include

in the Django ORM get rule using SonarQube (Figure 2 presents a

simplified version of this rule) we decided not to perform the

improvement cycle. Furthermore, the effort to continue inspecting

Taiga without an expectation of executing an improvement cycle

of the rule would not be worthwhile for the study purpose. Thus,

5 https://github.com/diogosmendonca/CADD/issues/1

we decided not to continue inspecting Taiga and finished the

evaluation.

We conclude from the Taiga evaluation that custom rules may

not be reusable in other software without adaptation, even when

both software systems use the same framework or reference

architecture. Programming style and architecture could be different

from one software to the other, and the execution of a PDM defect

pattern improvement cycles may be needed. Furthermore, as also

observed in the CADD system, the use of previously defined

custom rule may reduce the effort of checking a system for a

specific defect. In the case of Taiga, the Django ORM get rule

execution enabled to reduce the inspection effort, discarding the

need of inspecting 81 out of the 139 ORM get function calls,

representing inspection reduction potential of 58% (naive estimate

considering all function calls to require the same effort). The not

inspected function calls represents the ones discarded by rule. We

had confidence not to inspect those function calls since Django

ORM Get rule was successfully applied before in two software

systems with 100% of relative recall.

4.2 Within-company rules reuse evaluation

As an evaluation procedure, we started by executing the three

previously PHP rules, produced to reveal the patterns shown in

Table 2, without any modification on the Registration system. In

the first execution, no defect candidate was found by the rules. With

the intent of verifying this result, with the aid of an IDE, we

searched in the source code for the elements contained in each

defect pattern. We did not find any createFromFormat function call

or integer variables being passed to the DAO layer, which were the

elements of two of the rules (date conversion and the unchecked

integer patterns, respectively). However, we have found many id

variables being passed to the DAO layer, which are the elements of

the remaining rule (unchecked id). The rule was not able to find

those function calls because the naming convention for the DAO

instance variables (architectural relevant element) changed from

the original system to the Registration system. Tarhus the rule was

adjusted to reflect the new naming convention, and was again

executed against the Registration system. Table 5 presents the

results of the adjusted rule execution and inspection together with

the total number of all function calls.

The adjusted unchecked id rule found five defect candidates in

a total of 50 function calls, which represents an inspection

reduction potential of 90%. We inspected the alerts produced, and

two of them were confirmed as defects, thus reflecting a precision

of rule of 40%. Although this precision is low, the company

decided to use the rules in its production environment for the

Registration system. This decision was influenced by the positive

result obtained in the first experiment with those rules, which

strengthened the confidence of the company practitioners that the

rules are useful for finding defects. Additionally, the low absolute

number of false positives (three) associated with the functionality

SBQS’20, December 2020, São Luís, MA Brazil Mendonça and Kalinowski

of SonarQube of marking false positive alerts not to be shown

within the developer’s IDE made the effect of false positives

irrelevant for the developers.

We conclude from the Registration system evaluation that it is

possible to reuse custom rules in a within-company environment.

We also found that the adoption of the rules, in this case, was

influenced by the previous experience of the company with the

rules and that the precision may have had low influence on this

decision.

5 Discussion

In this section, we discuss each research question based on the

results of our study.

RQ1. (sensitivity) In which scope can custom rules be reused?

Our evaluations indicate that custom rules might be reused in other

software in within-company and cross-company environments.

Table 5 shows a summary of our quantitative results. The defects

found showed a potential positive reuse effect of custom rules on

web application reliability. This potential can be achieved not only

in the maintenance and evolution phases but also in the software

development phase. The CADD system was developed recently

and, at the time of the writing of this document, it was not in

production. The reuse of custom rules produced based on other

software helped to identify several defects in the CADD system

before it was released to its customers.

RQ2. (effect) What are the benefits and effort of reusing custom

rules?

The beneficial effects of the reuse of custom rules are finding

defects and reducing the number of defect candidates for verifying

a defect pattern in other software. Table 5 presents our results. The

precision of reused rules ranged from 40-75% without

compromising the relative recall of 100%, in the cases for which

this metric was measured. The inspection reduction potential for

verification ranged from 58-90% in our studies, which might

represent a significant effort reduction in verifying the presence of

a defect pattern in a software system.

The effort of the overall approach for reusing rules depends on

the project and how the reuse of rules is applied. The worst case

was found in Taiga evaluation. Despite the fact that reusing rules

could discard 58% of the alerts, the remaining 42% (58 alerts)

would still need to be inspected. During the inspection of the alerts

the recommendation for reducing its effort is to, as soon as a new

context, i.e., a new structure that avoids the defect, is found the

static analysis rule should be modified to discard all instances of it

at once. However, in Taiga we found some contexts that are

extremely difficult to include in static analysis rules, thus we

needed to manually inspect the remaining alerts (we took a part-

time week inspecting and stopped because of time constraints). The

effort in this case (worst one) is proportional to the effort of

inspecting remaining alerts and modifying the rule after applying

it.

On the other hand, there are cases in which reusing a rule is

very simple and straightforward. In the Registration system, 90%

of the alerts were discarded remaining only 5 to be inspected. A

simple adjustment of naming convention was done in the rule. The

rule was successfully reused in a few hours (less than 4 hours). We

found 2 defects, guaranteeing that in the software there is no other

similar defect and introduced an automated verification against

reinfection with this effort. In all cases, the relaxed version of the

rule used was an IDE search, which is quite fast to produce, i.e.,

produced in minutes.

RQ3. (sensitivity) Which factors have an impact on reusing custom

rules?

We found some influence factors for custom rules reuse and

adoption. First, architecture plays an essential role in rules

definitions and, consequently, in its reuse. Architectural elements

such as naming convetions and use of layers were relevant for reuse

of rules. However, architecture similarity is not enough for rule

reuse. As we observed in the Taiga and Registration systems,

differences in the way that architecture is implemented and

programming style might cause rules not to work correctly. Hence,

the adjustment of the rules might be needed to enable effective

reuse. An influence factor for reused rules adoption in a within-

company environment is the success of rules in finding defects on

other software. Indeed, the influence of this factor overcame the

low precision of rules achieved in the Registration system, and the

company chose to deploy the rule for defect prevention.

Table 5: Evaluation of reused rules

System Type of

Reuse

Technology Rule Function

Calls

(relaxed

rule)

Alerts

produced

by the

rule

Defects

found

Precision Relative

Recall

Inspection

Reduction

Potential

CADD Cross-

company

Python/

Django

Django

ORM Get

64 24 18 75% 100% 62.5%

Taiga Cross-

company

Python/

Django

Django

ORM Get

139 58 0 N/A N/A 58%

Registration Within-

company

PHP Unchecked

Id

50 5 2 40% N/A 90%

Toward practical reuse of custom static analysis rules for defect

localization
SBQS’20, December 2020, São Luís, MA Brazil

Table 6: New contexts found for Django ORM get rule in Taiga

Context Description Code Example

The use of pk to access an identifier attribute passed

to get method instead of an id attribute

User.objects.get(id=otherObject.pk)

Id validation using a validator and inheritance.

ProjectExistsValidator checks if the project exists

and is called through inheritance on

DueDatesCreationValidator is_valid method.

class ProjectExistsValidator:

 def validate_project_id(self, attrs, source):

 …

Class DueDatesCreationValidator(

 ProjectExistsValidator, validators.Validator):

 project_id = serializers.IntegerField()

 …

validator = validators.DueDatesCreationValidator(

data=request.DATA, context=context)

if not validator.is_valid():

 return response.BadRequest(validator.errors)

project_id = request.DATA.get('project_id')

project = models.Project.objects.get(id=project_id)

Constant as a literal or attribute. class BaseEventHook:

 platform = "Unknown"

 …

 def get_user(self, user_id, platform):

 …

 user = get_user_model().objects.get(

 is_system=True,

 username__startswith=platform)

6 Threats to Validity

Internal Validity. The verifications of the results produced by the

rules were conducted by a single researcher. However, the artifacts

used in CADD system evaluation are available online5, allowing

the investigations to be replicated by others to confirm the obtained

results. Regarding the artifacts of the Registration System and

Taiga, they were not publicly released. The Registration System is

proprietary, and its artifacts could not be released. In the case of

Taiga, the artifacts were not produced with evidence (print

screens), as they were produced in the CADD System, so we

decided not to publish them. Additionally, the partial inspection of

defect candidates, with the purpose of verifying the correctly

working of a rule during its reuse might have caused missing false

negatives. Inspecting all defect candidates discarded by a rule in

some cases may not be a practical solution for confirming if it is

working correctly. One of the expected benefits of reuse of rules is

reducing the effort of inspection, and by inspecting all defect

candidates this benefit would be achieved only in the future after

reusing the rule.

Construct Validity. We selected the software systems for the study

by convenience. For instance, the selection of software that was

developed by students, who have a novice level of experience in

software development, might have influenced the evaluation of the

reusability of the rules. It is noteworthy that the defects detected by

the patterns in our study are more commonly introduced by novice

developers than by experienced ones.

Conclusion Validity. The amount of systems chosen for evaluation

does not allow applying any more sophisticated statistical

techniques. Instead of claiming for conclusion validity, we

addressed the research questions using a qualitative approach,

trying to gather an initial understanding of the reuse scope, effects,

and factors.

External Validity. We recognize that the evaluations and

results presented in this section are only examples of the reuse of

rules produced by applying PDM. The quantitative results achieved

cannot be extrapolated for any software other than the ones in

which the evaluations were performed. Thus, our findings should

be interpreted as preliminary results from a specific context.

7 Related Work

In this section, we review other works on the reuse of static analysis

rules.

Shekhovtsov et al. [10] proposed a conceptual model to trace

back static analysis rules to design decisions. In this way, the reuse

of rules could occur by identifying similar design decisions, shared

between applications, to then select the rules to be reused. Despite

the conceptual model, the authors do not provide any experimental

results of its application.

There is research on reusing static analysis between DSLs [16]

and between languages [17], working at a higher level of

abstraction for reuse. Our work differs from them in its purpose.

Instead of aiming cross-language reuse, our study aims to evaluate

the practical reuse of custom rules in other projects with the same

programming language. In this way, we try to reuse the rules as

they were developed, evaluate them and make adjustments if

needed.

SBQS’20, December 2020, São Luís, MA Brazil Mendonça and Kalinowski

Gurgel et al. [11] proposed a DSL called TamDera that allows

the reuse of static analysis rules in an object-oriented way, i.e., by

extending an existent rule. TamDera was designed with the purpose

of checking architecture against architectural drift and erosion

symptoms. The reuse of TamDera written rules was verified in an

experiment involving 21 versions pertaining to 5 software projects,

and more than 600 rules. The authors were able to reuse 72% of the

rules; however, the precision of reused rules was not provided,

neither measures of the possible benefits of reusing those rules,

such as reduction of the number of inspection points.

To the best of our knowledge, our study is the first to report the

precision and relative recall when reusing custom static analysis

rules. We also introduced and are the first to measure the reduction

inspection potential caused by the reuse of custom rules. The

measures and experiments performed used tools that are commonly

available and extensively used in industry, such as SonarQube[4],

being a practical approach for reuse and allowing other researchers

to replicate our studies in different contexts.

8 Concluding Remarks

We found that custom static analysis rules can be reused in within-

or cross-company environments and not only for software in the

maintenance phase but also recently developed ones. We were able

to find defects in other software by reusing custom rules, as well as

to reduce the verification effort of defect patterns. Nevertheless, the

architecture and programming style played an essential role in

successfully reusing custom static analysis rules, thus being an

influencing factor for reuse. Our work also would help developers

to identify cases were the rules would not be reusable and to avoid

them.

In this way, the reuse of rules has the advantage of potentially

producing more robust rules and reducing the effort of identifying

similar patterns in other systems. We also observed that previous

successful experience with custom rules might influence rule reuse

adoption.

Based on our experience, we recommend some practices for the

evaluation and implementation of reusing custom rules. After

executing a rule in another software, our advice is to inspect both,

the alerts produced and other potential defect candidates that were

not alerted. The inspection of the former might show new contexts

to include in the rule to avoid false positives, and the latter might

present adjustable cases where the rules fail because of differences

in the architecture implementation or programming style. After

inspecting these cases, fully or incrementally, the rules can be

adjusted and executed to identify defects. Furthermore, additional

PDM defect rule improvement cycles can also be performed to

improve the precision of the rules if needed.

ACKNOWLEDGMENTS

We specially thank Professor Arndt von Staa for his contribution in

the beginning of this research with his insights and ideas. We also

thank the system analysts of DTINF/CEFET-RJ for supporting this

work. This work was partially supported by the CNPq grant

141345/2015-2.

REFERENCES

[1] S. Heckman and L. Williams, “A systematic literature review of actionable

alert identification techniques for automated static code analysis,” Inf.

Softw. Technol., vol. 53, no. 4, pp. 363–387, 2011.

[2] T. Muske and A. Serebrenik, “Survey of approaches for handling static

analysis alarms,” in Source Code Analysis and Manipulation (SCAM),

2016 IEEE 16th International Working Conference on, 2016, pp. 157–166.

[3] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,

“Using Static Analysis to Find Bugs,” IEEE Softw., vol. 25, no. 5, pp. 22–

29, 2008, doi: 10.1109/MS.2008.130.

[4] SonarSource, “SonarQube,” 2008. [Online]. Available:

https://www.sonarqube.org/. [Accessed: 20-Jul-2018].

[5] InfoEther Inc, “PMD.” [Online]. Available: http://pmd.github.io/.

[6] The University of Maryland, “FindBugs.” [Online]. Available:

http://findbugs.sourceforge.net/. [Accessed: 01-Jul-2016].

[7] Y. Tymchuk, M. Ghafari, and O. Nierstrasz, “JIT feedback: What

experienced developers like about static analysis,” in Proceedings -

International Conference on Software Engineering, 2018, doi:

10.1145/3196321.3196327.

[8] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the

State of Static Analysis: A Large-Scale Evaluation in Open Source

Software,” in 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), 2016, vol. 1, pp. 470–

481, doi: 10.1109/SANER.2016.105.

[9] M. Christakis and C. Bird, “What developers want and need from program

analysis: An empirical study,” in ASE 2016 - Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering,

2016, doi: 10.1145/2970276.297.

[10] V. A. Shekhovtsov, Y. Tomilko, and M. D. Godlevskiy, “Facilitating

Reuse of Code Checking Rules in Static Code Analysis,” in Lecture Notes

in Business Information Processing, 2009, pp. 91–102.

[11] A. Gurgel et al., “Blending and reusing rules for architectural degradation

prevention,” in Proceedings of the 13th international conference on

Modularity - MODULARITY ’14, 2014, doi: 10.1145/2577080.2577087.

[12] D. S. Mendonça et al., “Applying Pattern-driven Maintenance: A Method

to Prevent Latent Unhandled Exceptions in Web Applications,” in

Proceedings of the 12th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, 2018, pp. 31:1--31:10, doi:

10.1145/3239235.3268924.

[13] A. Bessey et al., “A few billion lines of code later: Using static analysis to

find bugs in the real world,” Commun. ACM, 2010, doi:

10.1145/1646353.1646374.

[14] M. Kalinowski, D. N. Card, and G. H. Travassos, “Evidence-Based

Guidelines to Defect Causal Analysis,” IEEE Softw., vol. 29, no. 4, pp. 16–

18, Jul. 2012, doi: 10.1109/MS.2012.72.

[15] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t

software developers use static analysis tools to find bugs?,” in 2013 35th

International Conference on Software Engineering (ICSE), 2013, pp. 672–

681, doi: 10.1109/ICSE.2013.6606613.

[16] J. Mey, T. Kühn, R. Schöne, and U. Assmann, “Reusing Static Analysis

across Different Domain-Specific Languages using Reference Attribute

Grammars,” Art, Sci. Eng. Program., vol. 4, no. 3, Feb. 2020, doi:

10.22152/programming-journal.org/2020/4/15.

[17] D. Darais, M. Might, and D. Van Horn, “Galois transformers and modular

abstract interpreters reusable metatheory for program analysis,” in

Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, OOPSLA, 2015, doi:

10.1145/2814270.2814308.

