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ABSTRACT 

Data mashups constructed from independent sources may contain 

inconsistencies, puzzling the user that observes the data. This 

paper formalizes the notion of consistent data mashups and 

introduces a heuristic procedure to compute such mashups. 

Categories and Subject Descriptors 

H. Information Systems [H.m. Miscellaneous]: Databases 

General Terms 

Design,Verification. 

Keywords 

Data mashup, constraint verification, Linked Data, inconsistency 

1. INTRODUCTION 
The term Linked Data refers to a set of best practices for 

publishing and connecting structured data on the Web [3]. From 

the user’s perspective, the main goal of Linked Data is the 

provision of integrated access to data from a wide range of 

distributed and heterogeneous data sources [4]. However, 

applications accessing a Linked Data corpus from different 

sources may face challenges [8] since the combined data may be 

inconsistent, inaccurate, incomplete, or stale [7]. In this paper, 

we investigate the problem of constructing consistent data 

mashups in the context of Linked Data.  

In more detail, consider a Linked Data mashup service that 

covers a given domain, defined by a domain ontology and a set of 

the Linked Data sources, modeled by application ontologies. We 

consider only one domain ontology for simplicity. We assume 

that: (1) the application ontology vocabularies are subsets of that 

of the domain ontology; (2) the Linked Data mashup service has 

access to the vocabularies of the application ontologies (but not 

to their constraints); (3) the Linked Data mashup service has 

access to the vocabulary and constraints of the domain ontology. 

These assumptions are consistent with the current Linked Data 

practice, which promotes: (1) reuse of known vocabularies to 

define a Linked Data source; (2) adoption of a VoiD document to 

indicate the vocabularies – but not the constraints – that a Linked 

Data source uses; (3) adoption of repositories that provide access 

to the full definition – vocabulary and constraints – of commonly 

used domain ontologies.   

We cannot assume, however, that the data retrieved from 

different Linked Data sources is consistent with the constraints 

of the domain ontology, for two reasons. First, we have no 

guarantee that each Linked Data source returns consistent data; 

in fact, we do not even know what constraints the Linked Data 

source respects. Second, even if each Linked Data source 

returned data which is consistent with the domain ontology 

constraints, the combined data might be inconsistent. In view of 

these observations, the Linked Data mashup service must always 

analyze the data coming from the Linked Data sources to identify 

and isolate inconsistent data. 

The contribution of the paper is a heuristic procedure to compute 

consistent data mashups, when the data sources return positive 

assertions, including equalities. The formalization is coherent 

with the current Linked Data best practices and is based on DL-

Lite core with arbitrary number restrictions [1] and on the notion 

of open ontology fragments [6]. The heuristic procedure explores 

the constraint graph [5] of the data mashup specification to 

construct a consistent data mashup. 

The paper is organized as follows. Section 2 further discusses the 

question of consistency in data mashups. Section 3 briefly 

reviews DL-Lite core, constraint graphs and open ontology 

fragments. Section 4 formalizes the notion of data mashup and 

discusses how to compute consistent data mashups. Finally, 

Section 5 contains the main conclusions. 

2. CONSISTENCY IN DATA MASHUPS 
This section illustrates our problem with the help of an example. 

We adopt the Music Ontology [9], which provides concepts and 

properties for describing artists, albums, tracks, performances, 

arrangements, etc. It is used by several Linked Data sources, 

including MusicBrainz and BBC Music. The Music Ontology 

uses terms from the Friend of a Friend and the XML Schema 

vocabularies. We use “mo:”, “foaf:” and “xsd:” to refer to these 

vocabularies. Figure 1 shows the class hierarchies of the Music 

Ontology rooted at classes foaf:Agent and foaf:Person. We take the 

domain ontology to be this part of the Music Ontology, which we 

call the Agent-Person Ontology (APO). We also consider that 

APO has a constraint which says that each person has at most 

one name.  

Let µµµµ1 be a data source about music artists and groups and µµµµ2 be 

a data source about music contracts, whose designs are both 

based on the APO domain ontology. Consider now a data mashup 
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for music data, modeled according to APO, and using data from 

µµµµ1 and µµµµ2. First, the user specifies the mashup he wants by 

selecting classes and properties from the vocabulary of APO. 

Suppose that he selects mo:MusicArtist, mo:SoloMusicArtist, 

mo:Label, foaf:name, xsd:string. For these terms, one may derive 

the following constraints from APO: 

• mo:SoloMusicArtist and mo:Label are disjoint classes 

• mo:SoloMusicArtist is a subclass of mo:MusicArtist  

• each solo music artist has at most one name 

Next, data is retrieved from µµµµ1 and µµµµ2, based on the selected 

classes and properties. Suppose that the retrieved data is 

expressed as the set of assertions shown in Table 1. For example, 

S1.2 indicates that “URI4” denotes a solo music artist and S1.4 

says that “URI4” and “URI6” denote the same individual.  

Table 1. Assertions expressing data returned from µµµµ1 and µµµµ2. 

# ΑΑΑΑ1 - Assertions from µµµµ1 ΑΑΑΑ2 - Assertions from µµµµ2 # 

S1.1 mo:SoloMusicArtist(“URI5”) mo:Label(“URI7”) S2.1 

S1.2 mo:SoloMusicArtist(“URI4”) mo:SoloMusicArtist(“URI6”) S2.2 

S1.3 foaf:name(“URI4”, “Janis Joplin”) foaf:name(“URI6”, “Janis Lyn Joplin”) S2.3 

S1.4 “URI4” owl:sameAs “URI6” “URI7” owl:sameAs “URI5” S2.4 

We have the following inconsistencies: S1.1 and S1.2 violate the 

constraint saying that mo:SoloMusicArtist is a subclass of 

mo:MusicArtist (the assertions mo:MusicArtist(“URI4”) and 

mo:MusicArtist(“URI5”) are missing); S1.1, S2.1 and S2.4 violate the 

constraint saying that mo:SoloMusicArtist and mo:Label are disjoint 

classes; S1.2, S1.3, S1.4 and S2.3 indicate a solo music artist, 

identified by “URI4” and “URI6”, with different names, violating 

the constraint that says that each solo music artist has at most 

one name.   

So, we must address two questions. The first question refers to 

which constraints must hold for a data mashup specification, 

which are not the constraints of the domain ontology, but those 

that are logical consequences of such constraints and that involve 

only the classes and properties of the data mashup. The second 

question refers to how to analyze data coming from different 

sources to identify and isolate conflicting data. 

3. A FORMAL FRAMEWORK 

3.1 DL-Lite Core with Number Restrictions  
We adopt DL-Lite core with arbitrary number restrictions [1], 

denoted
N

coreLite-DL , a DL-Lite dialect which is useful for 

conceptual modeling. A language L in the 
N

coreLite-DL
 
dialect 

is characterized by a vocabulary V, consisting of a set of object 

names, a set of atomic concepts, a set of atomic roles, and the 

bottom concept ⊥. The sets of basic concept descriptions, 

concept descriptions and role descriptions of L are defined as: 

• If P is an atomic role, then P and P− (inverse role) are role 

descriptions 

• If u is an atomic concept or the bottom concept, and p is a 

role description, then u and (≥n p) (at-least restriction, 

where n is a positive integer) are basic concept descriptions 

and also concept descriptions  

• If u is a concept description, then ¬u (negated concept) is a 

concept description 

An inclusion of L (or in V) is an expression of one of the forms  

u ⊑ v or u ⊑ ¬v, where u and v are basic concept descriptions. 

An assertion of L (or in V) is an expression of one of the forms 

C(a), ¬C(a), P(a,b), ¬P(a,b), (a ≈ b) and ¬(a ≈ b), where C is an 

atomic concept, P is an atomic role and a and b are object names. 

We also say that (a ≈ b) and ¬(a ≈ b) are an equality and an 

inequality, respectively. A formula of L (or in V) is an inclusion 

or an assertion of L. 

An interpretation s for L consists of a nonempty set ∆s, the 

domain of s, and an interpretation function, also denoted s, with 

the usual definition [1]. We use s(u) to indicate the value that s 

assigns to an expression u of L. We say that s satisfies a formula 

σ of L or that s is a model of σ, denoted s ⊨ σ, iff 

 s(u)⊆s(v)    if σ is of the form u ⊑ v   

 s(u)⊆s(¬v)  if σ is of the form u ⊑ ¬v 

 s(a)∈s(C)   if σ is of the form C(a) 

 (s(a),s(b))∈s(P) if σ is of the form P(a,b) 

 s(a)=s(b)   if σ is of the form (a ≈ b)   

 s ⊭θ  if σ is of the form ¬θ 

Let Σ be a set of formulas of L. We say that: s satisfiesΣ or that s 

is a model of Σ, denoted s ⊨ Σ, iff s satisfies all formulas in Σ ; Σ 

logically implies σ, denoted Σ ⊨ σ, iff any model of Σ satisfies σ; 

Σ is satisfiable or consistent iff there is a model of Σ.  

We say that a set of assertions A induces a model of Σ iff the 

interpretation s such that a∈s(C) iff C(a)∈A and (a,b)∈s(P) iff 

P(a,b)∈A, for each atomic concept C and atomic role P, is a 

model of Σ. We abbreviate: “¬⊥” as “⊤” (universal concept),  

“(≥1 p)” as “∃p” (existential quantification), “¬(≥n+1 p)” as  

“(≤n p)” (at-most restriction) and “u ⊑ ¬v” as “u | v” 

(disjunction). By an unabbreviated expression we mean an 

expression that does not use such abbreviations. 

3.2 Ontologies and Knowledge Bases 
We work with several notions built upon DL-Lite core with 

arbitrary number restrictions, defined as follows. 

Definition 1:  

(a) An ontology is a pair O=(V,Σ) such that 

(i)  V is a finite alphabet, the vocabulary of O, whose 

atomic concepts and atomic roles are called the classes 

and properties of O, respectively, and 

(ii)  Σ is a finite set of inclusions in V, the constraints of O.  

(b) A knowledge base is a triple KB=(V,Σ,Α) such that  

(i)  (V,Σ) is an ontology, and  

(ii)  Α is a finite set of assertions in V. 

(c) A data source is a pair DS=(V,A) such that 

(i)  V is a finite alphabet, and  

(ii)  Α is a finite set of assertions in V. � 

Figure 1. The class hierarchies of APO. 
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Note that we allow equality and inequality assertions to occur as 

assertions of a knowledge base or of a data source (to capture 

owl:sameAs and owl:differentFrom OWL properties). Example 1 

illustrates the concept of ontology. 

Example 1: Recall that, in the example of Section 2, we adopted 

as domain ontology the Agent-Person Ontology, which 

corresponds to the part of Music Ontology depicted in Figure 1. 

This ontology is formalized as APO = (VAPO, ΣAPO), where  

VAPO = { foaf:Agent, foaf:Person, foaf:Group, foaf:Organization,    

mo:MusicArtist, mo:CorporateBody, mo:SoloMusicArtist,    

mo:MusicGroup, mo:Label, mo:member_of, foaf:name, xsd:string } 

and ΣAPO is the set of constraints shown in Table 2. 

Table 2. Constraints of APO (unabbreviated form). 

Constraint Informal specification 

(≥1 foaf:name) ⊑ foaf:Person The domain of foaf:name is 

foaf:Person 

(≥1 foaf:name−
 ) ⊑ xsd:string  The range of foaf:name is xsd:string  

(≥1mo:member_of) ⊑ foaf:Person The domain of mo:member_of is 

foaf:Person 

(≥1mo:member_of−)⊑ foaf:Group The range of mo:member_of is 

foaf:Group 

mo:MusicArtist ⊑ foaf:Agent mo:MusicArtist is a subset of 

foaf:Agent 

foaf:Group ⊑ foaf:Agent foaf:Group is a subset of foaf:Agent 

foaf:Organization ⊑ foaf:Agent 

 

foaf:Organization is a subset of 

foaf:Agent 

mo:SoloMusicArtist ⊑ foaf:Person 

 

mo:SoloMusicArtist is a subset of 

foaf:Person 

mo:SoloMusicArtist⊑ mo:MusicArtist mo:SoloMusicArtist is a subset of 

mo:MusicArtist 

mo:MusicGroup ⊑ mo:MusicArtist 

 

mo:MusicGroup is a subset of 

mo:MusicArtist 

mo:MusicGroup ⊑ foaf:Group 

 

mo:MusicGroup is a subset of 

foaf:Group 

mo:CorporateBody ⊑ foaf:Organization mo:CorporateBody is a subset of 

foaf:Organization 

mo:Label ⊑ mo:CorporateBody mo:Label is a subset of 

mo:CorporateBody 

foaf:Person ⊑ ¬foaf:Organization 

 

foaf:Person and foaf:Organization are 
disjoint 

foaf:Person ⊑ ¬(≥2 foaf:name) Each person has at most one name 

3.3 Constraint Graphs 
The notion of constraint graph captures the structure of sets of 

constraints and is fundamental to construct the constraints of a 

data mashup specification. We introduce this notion with the 

help of an example and refer the reader to [5] for the details. 

Note that the nodes of a constraint graph G are labeled with 

expressions and their complements. We say that the complement 

of a basic concept description e is ¬e, and vice-versa. If c is a 

concept description, then c denotes the complement of c. We 

say that node u is a ⊥-node of G iff there are paths from node u 

to nodes v and v , for some expression v. If node u is a ⊥-node 

then we say that node u is a ⊤-node. 

Example 2: Consider the set of constraints ΣAPO, shown in Table 

2. Figure 2 depicts the graph G(ΣAPO) that represents ΣAPO, which 

is constructed as follows. For each inclusion u ⊑ v in ΣAPO, there 

are nodes in G(ΣAPO) labeled with u, u , v and v , and arcs from 

node u to node v and from node v to node u . For example, the 

constraint foaf:Person ⊑ ¬foaf:Organization generates two arcs: an 

arc from node foaf:Person to node ¬foaf:Organization and an arc 

from node foaf:Organization to node ¬foaf:Person. 

G(ΣAPO) is such that, if there is a path from node u to node v, 

then ΣAPO logically implies u ⊑ v. For example, since there is a 

path from node mo:CorporateBody to node ¬(≥2 foaf:name), ΣAPO 

logically implies mo:CorporateBody ⊑ ¬(≥2 foaf:name). Note that 

there is a path from node (≥2 foaf:name) to nodes foaf:Person and 

¬foaf:Person. Hence, we have that ΣAPO logically implies  

(≥2 foaf:name) ⊑ foaf:Person and (≥2 foaf:name) ⊑ ¬foaf:Person. 

Thus, ΣAPO logically implies (≥2 foaf:name) ⊑ ⊥, that is, node  

(≥2 foaf:name) is a ⊥-node of G(ΣAPO). 

 

3.4 Open Ontology Fragments 
After the user selects classes and properties from the domain 

ontology, the mashup service must compute a set of constraints 

that captures their semantics. More precisely, if W is an alphabet, 

let Σ / W denote the set of formulas that use only classes and 

properties in W and that are logically implied by Σ. 

Definition 2: Let O = (VO ,ΣO) and F = (VF ,ΣF) be two 

ontologies. Then, F is an open ontology fragment of O iff  

(i)  All classes and properties in VF occur in VO, and 

(ii)  ΣF is tautologically equivalent to ΣO /VF. � 

The next example illustrates how to generate ΣF so that the 

second requirement is satisfied, using the graph representing ΣO. 

Example 3: Recall that, in the example of Section 2, the mashup 

is formalized as the ontology M0=(V0,Σ0), where  

V0 = { mo:MusicArtist, mo:SoloMusicArtist, mo:Label, foaf:name, 

xsd:string }. 

We may compute the constraints in Σ0, shown in Table 3, as 

follows. First mark the nodes of the constraint graph of ΣAPO 

labeled with expressions that use only symbols in V0 (in shaded 

boxes in Figure 2). Among such nodes, detect which ones are  

⊥-nodes and ⊤-nodes (in dashed border lines in Figure 2). 

Construct the constraints in Σ0 as follows. Let Q be a marked  

⊥-node and u be an expression which labels Q and which uses 

only symbols in V0. Add a constraint of the form u ⊑ ⊥ to Σ0, as 

xsd:string (≥1 foaf:name−) ¬(≥1 foaf:name−) ¬xsd:string 

(≥1 mo:member_of) 

 
¬(≥1 mo:member_of)  

(≥2 foaf:name) ¬(≥2foaf:name) 

¬foaf:Person 

Figure 2. Graph G(ΣΣΣΣAPO) representing the constraints of APO. 
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in line 1 of Table 3. Let M and N be two marked nodes, which 

are not a ⊥-node or a ⊤-node, such that there is a path from M to 

N. Let u be a positive expression and v be an expression which 

label M and N, respectively, and which use only symbols in V0. 

Add a constraint of the form u ⊑ v to Σ0, as in lines 2, 3, 4 and 5 

of Table 3. However, if v ⊑ u  is in Σ0, do not add u ⊑ v to Σ0. 

Table 3. Constraints of M0 (unabbreviated form). 

# Constraint Informal specification 

1 (≥2 foaf:name) ⊑ ⊥  No individual has more than one 
name 

2 mo:Label ⊑ ¬(≥1 foaf:name) Individuals in mo:Label have no 
name 

3 (≥1 foaf:name−
 ) ⊑ xsd:string   The range of foaf:name is xsd:string 

4 mo:SoloMusicArtist ⊑ ¬mo:Label mo:SoloMusicArtist and mo:Label 
are disjoint 

5 mo:SoloMusicArtist ⊑ mo:MusicArtist mo:SoloMusicArtist is a subclass of 

mo:MusicArtist 

4. DATA MASHUPS 

4.1 A Conceptual Framework for Mashups 

A data mashup is formalized as follows. 

Definition 3: Let DO=(VDO,ΣDO) be the domain ontology.  

(a) We say that Φ=((V,Σ,Α),(Α1,…,Αn)) is a data mashup of DO 

iff 

(i)  a =(Α1,…,Αn) is a finite list of finite sets of assertions 

whose atomic concepts and atomic roles occur in V; 

(ii)  KB=(V,Σ,Α) is a knowledge base such that 

a. (V,Σ) is an open ontology fragment of DO, where 

V is called the mashup vocabulary and Σ is called 

the set of mashup constraints. 

b. Α is a finite set of assertions whose atomic 

concepts and atomic roles occur in V; 

furthermore, there is a set of assertions  

ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable 

and Σ ∪ ΒΒΒΒ  logically implies Α.  

(b) We say that Φ is a positive data mashup with equalities of 

DO iff a is a finite list of finite sets of positive assertions, 

possibly including equalities. �  

The ontology (V,Σ) is a conceptual model of what the user 

observes. The vocabulary V represents the classes and properties 

in VDO that the user selected; the set of constraints Σ is computed 

by the mashup service, based on V and ΣDO, in such a way that 

(V,Σ) is an open ontology fragment of DO, in order to capture 

what constraints of the domain ontology apply to the classes and 

properties the user selected. 

For i=1,…,n, the set Αi models the data obtained from the ith 

data source to populate the classes and properties in V. Note that  

Σ ∪ Α1 ∪…∪ Αn may not be satisfiable, as discussed in Section 

2.  

The set of assertions Α represents the data that the user observes. 

We take Α as a logical consequence of Σ and a subset ΒΒΒΒ of  

Α1 ∪…∪ Αn, provided that Σ ∪ ΒΒΒΒ is satisfiable. Note that Α is 

therefore a logical consequence of Σ ∪ Α1 ∪…∪ Αn using a 

simple paraconsistent notion of logical implication to account for 

inconsistencies. 

4.2 Overview  
Consider the following problem, which we call MASHUP: 

Instance: An ontology (V,Σ), built upon DL-Lite core with 

arbitrary number restrictions, and a list Α1,…, Αn of finite sets of 

assertions in V. 

Question: What is the largest set of assertions Α whose atomic 

concepts and atomic roles occur in V such that there is a set of 

assertions ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable and  

Σ ∪ ΒΒΒΒ logically implies Α? 

We can prove that MASHUP is NP-Complete by a reduction of 

the satisfiability problem of 
N

coreLite-DL knowledge bases with 

equality and inequality constraints [1]. In view of this result, we 

present a heuristic procedure that computes consistent mashups 

(not necessarily maximal) in polynomial time for sets of positive 

assertions. The heuristic procedure has three stages and explores 

a strategy to minimize the cost of consistency checking. The 

stages are implemented by the procedures MashupAnalysis, 

ConsistentLocalData and ConsistentMashupData. 

During the first stage, the MashupAnalysis procedure computes 

the set Σ of mashup constraints so that (V,Σ) is an open fragment 

of DO. At the second stage, each wrapper service separately 

invokes the ConsistentLocalData procedure to preprocess the 

assertions obtained from the data source the wrapper 

encapsulates to avoid inconsistencies w.r.t. Σ. In the third stage, 

the ConsistentMashupData procedure analyses the combined 

data passed by the wrappers to create a final set of assertions that 

is consistent with Σ.  

4.3 Consistency Services at the Wrapper 
Let DO=(VDO,ΣDO) be the domain ontology, V be the mashup 

vocabulary and Σ be the mashup constraints. For i=1,…,n, the 

wrapper of the ith data source first obtains a finite set Αi of 

positive assertions in V, including equalities. The wrapper calls 

the ConsistentLocalData procedure (see Figure 3) to compute 

the completion of Ai w.r.t. Σ, denoted comp[Ai,Σ], defined as: (i) 

the smallest finite set that contains Ai; (ii) uses only individuals 

that occur in Ai; and (iii) induces a finite model of Σ.  

Condition (i) corresponds to the goal that comp[Ai,Σ] should 

expand Ai in the least possible way. Condition (ii) reflects the 

idea that comp[Ai,Σ] should not artificially introduce new 

individuals (created perhaps with the help of Skolem functions). 

Finally, condition (iii) captures the fact that we need to construct, 

and pass to the user, a finite set of assertions that represent data 

consistent with Σ. It is not always possible to compute 

comp[Ai,Σ] satisfying all three conditions (this discussion is 

outside the scope of this paper).  

As an example, returning to Section 2, since mo:SoloMusicArtist is 

a subclass of mo:MusicArtist, the ConsistentLocalData procedure 

creates an assertion of the form mo:MusicArtist(a), if a wrapper 

obtains mo:SoloMusicArtist(a) from its data source. 

In the presence of equalities, we also have to consider 

equivalence classes of object names. In Table 1, the equality S1.4 

(expressed using owl:sameAs) indicates that “URI4” and “URI6” 

are equivalent, and S2.4 that “URI7” and “URI5” are equivalent. 

We use [o] to denote the equivalence class an object name o 

belongs to. 



Let A be a set of assertions, including equalities. The set of 

equivalence classes of A, denoted [A], is the set of equivalence 

classes of the object names that occur in A induced by the 

equalities in A. A normalization function for A is a function n 

that maps each equivalence class E in [A] to an individual in E. 

The normalization of A w.r.t. n is the set of assertions, excluding 

equalities, obtained by replacing each occurrence of an object 

name a (of an equivalence class [a]) in an assertion in A 

(excluding equalities) by n([a]). 

4.4 Computing the Final Mashup 
Now we describe the ConsistentMashupData procedure that 

implements a greedy strategy based on an ordering of the 

assertions, induced by an ordering of the data sources and, within 

the same data source, induced by an ordering of the symbols in 

the alphabet, computed from the structure of the constraint graph 

(equalities have precedence over the other assertions). 

Before ConsistentMashupData is called, the Prepare 

procedure orders the symbols in V as follows. It constructs the 

constraint graph G(Σ) and creates a topological sort M of the 

nodes in G(Σ) labeled with positive expressions, from sinks to 

sources, excluding the ⊥-nodes and ⊤-nodes. Then, Prepare 

sorts the symbols in V (excluding symbols that represent XML 

data types), creating a list U which is coherent with M, that is, if 

M appears before N in M, then all symbols that appear in 

expressions that label M occur in U before all symbols that 

appear in expressions that label N, but not in expressions that 

label M. The ordering of the symbols in U coherently with a 

topological sort of the nodes of the constraint graph helps healing 

inconsistencies in much the same way as the 

ConsistentLocalData procedure does.    

ConsistentMashupData (in Figure 4) receives as input U, Σ and 

a = (Α1,…,Αn). It outputs U, perhaps with new object names, and 

a finite set of assertions Α in V such that Σ ∪ ΒΒΒΒ  implies Α, for 

some ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable. 

ConsistentMashupData first calls ConstructModel (in Figure 

5), which calls ProcessEqualities and ProcessAssertions (in 

Figures 6 and 7) to construct a set e of equivalence classes of 

object names, using the equalities in Αi, and a model s of Σ, 

using the other assertions in Αi, for each i=1,…,n. In each 

iteration, these two procedures check if s remains a model of 

Σ by testing, for each constraint e ⊑ f of Σ, if s(e) ⊆⊆⊆⊆ s(f). Finally, 

ConsistentMashupData calls ConstructMashup (in Figure 8) 

to create the set of assertions Α of the mashup. 

Note that Σ ∪ Α is satisfiable since s is constructed as a model of 

Σ and since Α is the set of (positive) assertions that represent s 

and e. Furthermore, let ΒΒΒΒ be the set of assertions actually used to 

construct s and e in the procedure. Σ ∪ ΒΒΒΒ logically implies Α, by 

the construction of s and e in the procedure. 

We illustrate how ConsistentMashupData operates using the 

example in Section 2. Recall that APO is the domain ontology 

and that the mashup vocabulary is V = { foaf:name, xsd:string, 

mo:Label, mo:MusicArtist, mo:SoloMusicArtist }. Also recall from 

Example 3 that the mashup constraints are:  

Σ = { (≥2 foaf:name) ⊑ ⊥, mo:Label ⊑ ¬(≥1 foaf:name),  

(≥1 foaf:name−) ⊑ xsd:string, mo:SoloMusicArtist ⊑ ¬mo:Label,  

mo:SoloMusicArtist ⊑ mo:MusicArtist } 

ConsistentDataMashup (U , Σ, a ; U , Α) 

input:    U  – a list of the symbols in V0, where V0 ⊆ VDO  

              Σ – a set of constraints 

              a  = (Α1,…,Αn) – a list of finite sets of positive assertions in V0 

output: U  – the original list U perhaps with new object names  

             Α – a set of assertions that represents the mashup  

begin                                                        // construct a model s of Σ and                  

    ConstructModel (U , Σ , a ; s , e)        // a set of equivalence classes e  

    ConstructMashup (s , e , U ; U , Α)   // construct Α and adjust U  

    return U , Α 

end 

Figure 4. Procedure ConsistentDataMashup. 

ConstructModel (U , Σ , a ; s , e)   

                  // U, Σ and a = (Α1,…,Αn) as in ConsistentDataMashup  

begin         // s is a model of Σ and e is a set of equivalence classes 

    e ={{a} / a is an individual that occurs in Α1,…,Αn}  // initialize e          

    for each atomic concept or atomic role v in U do s(v) =∅;  // initialize s  

    for each i=1 to n do 

          begin ProcessEqualities (Σ , Αi , s , e ; s , e);      

                     Let Bi contain all assertions in Αi which are not equalities;           

                     ProcessAssertions (U , Σ  , Bi , s , e ; s)    

          end            

     return s , e 

end 

Figure 5. Procedure ConstructModel. 

ProcessEqualities (Σ  , Αi , s , e ; s , e)  

                 // Σ  and Αi are as in ConsistentDataMashup  

begin       // s is a model of Σ and e is a set of equivalence classes 

    for each equality (a ≈ b) in Αi do 

          begin change e so that a and b become  
                                               members of the same equivalence class; 

                     change s to accommodate the new version of e; 

                     if s is still a model of Σ    // a simple test 

                         then commit the changes to s and e   // accept (a ≈ b) 

                         else  reject the changes to s and e       // ignore (a ≈ b) 

          end 

    return s , e 

end 
Figure 6. Procedure ProcessEqualities. 

 

ConsistentLocalData ( Ai , Σ  ; comp[Ai,Σ] )       

begin  

     initialize T with a normalization of Ai; 

     mark all assertions in T as unprocessed; 

     for each unprocessed assertion P(a,b) in T do // role assertions 

              begin add assertions of the form (≥1 P)(a) and (≥1 P
−
)(b) to T,  

                                marked as unprocessed; 

                        mark P(a,b) as processed 

              end 

     while there is an unprocessed assertion e(a) in T do   

          // class assertions 

          begin let M be the node of G(Σ) labeled with e;  

                for each other expression f that also labels M do    

                     // Σ logically implies e ≡ f 

                     add an assertion f(a) to T, if not already in T,  
                             marked as unprocessed; 

                for each node N such that (M,N) is an arc of G(Σ) do  

                      // Σ logically implies e ⊑ f 

                      for each expression g that labels N do             

                            add an assertion g(a) to T, if not already in T,  
                                    marked as unprocessed; 

                mark e(a) as processed 

          end 

        comp[Ai,Σ] = T ∪ { (a ≈ b) / (a ≈ b) is an equality in Ai } ; 

        return comp[Ai,Σ] 

end 

Figure 3. Procedure ConsistentLocalData. 



Prepare computes G(Σ) (see Fig. 2. Next, Prepare creates a 

topological sort M of the nodes in G(Σ) labeled with positive 

expressions. Finally, Prepare sorts the symbols in V, creating a 

list U, which is coherent with M. Assume that U is  

U = ( mo:MusicArtist, mo:SoloMusicArtist, mo:Label, foaf:name ). 

Assume that Β1 and Β2, shown in Tables 1 and 4, are the sets of 

assertions passed by the wrappers of the data sources µµµµ1 and µµµµ2 

(the assertions in Table 4 are derived by the wrappers from those 

in Table 1). Also assume that µµµµ1 has precedence over µµµµ2.  

Table 4. Assertions expressing data returned from µµµµ1 and µµµµ2. 

# Assert. derived from µµµµ1 Assert. derived from µµµµ2 # 

S1.5 mo:MusicArtist(“URI5”) mo:MusicArtist(“URI6”) S2.5 

S1.6 mo:MusicArtist(“URI4”)   

ConsistentMashupData calls ConstructModel, which 

processes the assertions in Β1 before those in Β2 and selects the 

symbols in the order in which they appear in U. 

ConstructModel first calls ProcessEqualities to process the 

equalities in Β1, creating the equivalence classes {“URI4”,“URI6”}, 

{“URI5”} and {“Janis Joplin”}. Then, it calls ProcessAssertions to 

process the other assertions in Β1, resulting in  

s(mo:MusicArtist)=s(mo:SoloMusicArtist)={{“URI4”,“URI6”},{“URI5”} 

s(mo:Label) = ∅  

s(foaf:name) = {({“URI4”,“URI6”},{“Janis Joplin”})}. 

Next, ConstructModel calls ProcessEqualities to process the 

equalities in Β2. To process S2.4, ProcessEqualities tentatively 

changes {“URI5”} to {“URI5”,“URI7”} and s(mo:MusicArtist) and 

s(mo:SoloMusicArtist) to {{“URI4”,“URI6”},{“URI5”,“URI7”}}. Since s 

remains a model of Σ0, ProcessEqualities commits these 

changes. Then, ConstructModel calls ProcessAssertions to 

process the other assertions in Β2. The interpretation  

s(mo:MusicArtist) = s(mo:SoloMusicArtist) 

                          = {{“URI4”,“URI6”},{“URI5”,“URI7”}}  

remains unchanged after processing S2.2. The interpretations 

s(mo:Label)=∅ and  

s(foaf:name)={({“URI4”,“URI6”}, {“Janis Joplin”})}  

also remain unchanged, since S2.1 and S2.3 cannot be considered 

without leading to consistency violations. Indeed, adding 

{“URI5”,“URI7”} to s(mo:Label) would violate 

mo:SoloMusicArtist⊑¬mo:Label 

and adding ({“URI4”,“URI6”},{“Janis Lyn Joplin”}) to s(foaf:name) 

would violate  

(≥2 foaf:name) ⊑ ⊥ 

Finally, ConsistentMashupData calls ContructMashup, which 

uses s and e to create the final set of assertions Α. For example, 

the equivalence classes {“URI4”,“URI6”} and {“URI5”,“URI7”} 

generate  

“URI4” owl:sameAs “URI6” and “URI5” owl:sameAs “URI7” 

and s(mo:SoloMusicArtist)={{“URI4”,“URI6”},{“URI5”,“URI7”}} induces  

mo:SoloMusicArtist(“URI4”) and mo:SoloMusicArtist(“URI5”). 

5. CONCLUSIONS 
We investigated the problem of creating data mashups from 

potentially inconsistent sources. We first formalized the notion of 

data mashups and then described a heuristic procedure to 

compute consistent data mashups. As for current work, we are 

implementing a data mashup service that includes the approach. 
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ProcessAssertions (U , Σ  , Bi , s , e ; s)  

                 // U=(v1,…,vm) ; Σ as in ConsistentDataMashup 

begin       // Bi are the positive assertions in Αi, except equalities   

    for k=1 to m do      // s is a model of Σ and e is a set of equiv. classes  

        for each assertion σ in Bi about vk do   // expand s 

           begin                                           // σ is a positive class assertion 

               if vk is an atomic concept C and σ is of the form C(a)   

                   then add [a] to s(C)           // tentatively add [a] to s(C)   

                                                               // σ is a positive role assertion           

               if vk is an atomic role P and σ is of the form P(a,b)       

                   then add ([a],[b]) to s(P); // tentatively add ([a], [b]) to s(P) 

               if s is still a model of Σ                 // a simple test 

                  then commit the changes to s    // accept changes to s 

                  else   reject the changes to s      // reject changes to s 

            end 

    return s 
end 

Figure 7. Procedure ProcessAssertions. 

ConstructMashup (s , e , U ; U , Α)        

                  //  s is a model of Σ and e is a set of equiv. classes                        

begin  Initialize Α = ∅;  //  U and Α are as in ConsistentDataMashup 

     add equalities to Α to express the equivalence classes in e; 

     // add other assertions in Α 

     for each atomic concept C in U do   // one individual per equiv. class                   

          for each equivalence class {a1,..,ar} in s(C) do   

                 begin add C(a1) to Α and  

                           add a1,..,ar to U, if not already in U end; 

     for each atomic role P in U do  // one individual per equiv. class 

           for each pair of equivalence classes ({a1,..,ar},{b1,..,bs}) in s(P) do 

                 begin add P(a1,b1) to Α and  

                           add a1,..,ar,b1,..,bs to U, if not already in U end; 

    return U , Α 

end 

Figure 8. Procedure ConstructMashup. 


