
Dealing with inconsistencies in Linked Data Mashups

Eveline R. Sacramento, Marco A. Casanova,
Karin K. Breitman, Antonio L. Furtado

Department of Informatics – PUC-Rio
Rio de Janeiro, RJ – Brazil

{esacramento, casanova, karin,
furtado}@inf.puc-rio.br

José Antonio F. de Macêdo,
Vânia M.P. Vidal

Department of Computing - UFC
Fortaleza, CE – Brazil

{jose.macedo, vvidal}@lia.ufc.br

ABSTRACT

Data mashups constructed from independent sources may contain

inconsistencies, puzzling the user that observes the data. This

paper formalizes the notion of consistent data mashups and

introduces a heuristic procedure to compute such mashups.

Categories and Subject Descriptors

H. Information Systems [H.m. Miscellaneous]: Databases

General Terms

Design,Verification.

Keywords

Data mashup, constraint verification, Linked Data, inconsistency

1. INTRODUCTION
The term Linked Data refers to a set of best practices for

publishing and connecting structured data on the Web [3]. From

the user’s perspective, the main goal of Linked Data is the

provision of integrated access to data from a wide range of

distributed and heterogeneous data sources [4]. However,

applications accessing a Linked Data corpus from different

sources may face challenges [8] since the combined data may be

inconsistent, inaccurate, incomplete, or stale [7]. In this paper,

we investigate the problem of constructing consistent data

mashups in the context of Linked Data.

In more detail, consider a Linked Data mashup service that

covers a given domain, defined by a domain ontology and a set of

the Linked Data sources, modeled by application ontologies. We

consider only one domain ontology for simplicity. We assume

that: (1) the application ontology vocabularies are subsets of that

of the domain ontology; (2) the Linked Data mashup service has

access to the vocabularies of the application ontologies (but not

to their constraints); (3) the Linked Data mashup service has

access to the vocabulary and constraints of the domain ontology.

These assumptions are consistent with the current Linked Data

practice, which promotes: (1) reuse of known vocabularies to

define a Linked Data source; (2) adoption of a VoiD document to

indicate the vocabularies – but not the constraints – that a Linked

Data source uses; (3) adoption of repositories that provide access

to the full definition – vocabulary and constraints – of commonly

used domain ontologies.

We cannot assume, however, that the data retrieved from

different Linked Data sources is consistent with the constraints

of the domain ontology, for two reasons. First, we have no

guarantee that each Linked Data source returns consistent data;

in fact, we do not even know what constraints the Linked Data

source respects. Second, even if each Linked Data source

returned data which is consistent with the domain ontology

constraints, the combined data might be inconsistent. In view of

these observations, the Linked Data mashup service must always

analyze the data coming from the Linked Data sources to identify

and isolate inconsistent data.

The contribution of the paper is a heuristic procedure to compute

consistent data mashups, when the data sources return positive

assertions, including equalities. The formalization is coherent

with the current Linked Data best practices and is based on DL-

Lite core with arbitrary number restrictions [1] and on the notion

of open ontology fragments [6]. The heuristic procedure explores

the constraint graph [5] of the data mashup specification to

construct a consistent data mashup.

The paper is organized as follows. Section 2 further discusses the

question of consistency in data mashups. Section 3 briefly

reviews DL-Lite core, constraint graphs and open ontology

fragments. Section 4 formalizes the notion of data mashup and

discusses how to compute consistent data mashups. Finally,

Section 5 contains the main conclusions.

2. CONSISTENCY IN DATA MASHUPS
This section illustrates our problem with the help of an example.

We adopt the Music Ontology [9], which provides concepts and

properties for describing artists, albums, tracks, performances,

arrangements, etc. It is used by several Linked Data sources,

including MusicBrainz and BBC Music. The Music Ontology

uses terms from the Friend of a Friend and the XML Schema

vocabularies. We use “mo:”, “foaf:” and “xsd:” to refer to these

vocabularies. Figure 1 shows the class hierarchies of the Music

Ontology rooted at classes foaf:Agent and foaf:Person. We take the

domain ontology to be this part of the Music Ontology, which we

call the Agent-Person Ontology (APO). We also consider that

APO has a constraint which says that each person has at most

one name.

Let µµµµ1 be a data source about music artists and groups and µµµµ2 be

a data source about music contracts, whose designs are both

based on the APO domain ontology. Consider now a data mashup

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
IDEAS12 2012, August 8-10, Prague [Czech Republic]
Editors: Bipin C. Desai, Jaroslav Pokorny, Jorge Bernardino Copyright
©2012 ACM 978-1-4503-1234-9/12/08 $15.00.

for music data, modeled according to APO, and using data from

µµµµ1 and µµµµ2. First, the user specifies the mashup he wants by

selecting classes and properties from the vocabulary of APO.

Suppose that he selects mo:MusicArtist, mo:SoloMusicArtist,

mo:Label, foaf:name, xsd:string. For these terms, one may derive

the following constraints from APO:

• mo:SoloMusicArtist and mo:Label are disjoint classes

• mo:SoloMusicArtist is a subclass of mo:MusicArtist

• each solo music artist has at most one name

Next, data is retrieved from µµµµ1 and µµµµ2, based on the selected

classes and properties. Suppose that the retrieved data is

expressed as the set of assertions shown in Table 1. For example,

S1.2 indicates that “URI4” denotes a solo music artist and S1.4

says that “URI4” and “URI6” denote the same individual.

Table 1. Assertions expressing data returned from µµµµ1 and µµµµ2.

ΑΑΑΑ1 - Assertions from µµµµ1 ΑΑΑΑ2 - Assertions from µµµµ2 #

S1.1 mo:SoloMusicArtist(“URI5”) mo:Label(“URI7”) S2.1

S1.2 mo:SoloMusicArtist(“URI4”) mo:SoloMusicArtist(“URI6”) S2.2

S1.3 foaf:name(“URI4”, “Janis Joplin”) foaf:name(“URI6”, “Janis Lyn Joplin”) S2.3

S1.4 “URI4” owl:sameAs “URI6” “URI7” owl:sameAs “URI5” S2.4

We have the following inconsistencies: S1.1 and S1.2 violate the

constraint saying that mo:SoloMusicArtist is a subclass of

mo:MusicArtist (the assertions mo:MusicArtist(“URI4”) and

mo:MusicArtist(“URI5”) are missing); S1.1, S2.1 and S2.4 violate the

constraint saying that mo:SoloMusicArtist and mo:Label are disjoint

classes; S1.2, S1.3, S1.4 and S2.3 indicate a solo music artist,

identified by “URI4” and “URI6”, with different names, violating

the constraint that says that each solo music artist has at most

one name.

So, we must address two questions. The first question refers to

which constraints must hold for a data mashup specification,

which are not the constraints of the domain ontology, but those

that are logical consequences of such constraints and that involve

only the classes and properties of the data mashup. The second

question refers to how to analyze data coming from different

sources to identify and isolate conflicting data.

3. A FORMAL FRAMEWORK

3.1 DL-Lite Core with Number Restrictions
We adopt DL-Lite core with arbitrary number restrictions [1],

denoted
N

coreLite-DL , a DL-Lite dialect which is useful for

conceptual modeling. A language L in the
N

coreLite-DL

dialect

is characterized by a vocabulary V, consisting of a set of object

names, a set of atomic concepts, a set of atomic roles, and the

bottom concept ⊥. The sets of basic concept descriptions,

concept descriptions and role descriptions of L are defined as:

• If P is an atomic role, then P and P− (inverse role) are role

descriptions

• If u is an atomic concept or the bottom concept, and p is a

role description, then u and (≥n p) (at-least restriction,

where n is a positive integer) are basic concept descriptions

and also concept descriptions

• If u is a concept description, then ¬u (negated concept) is a

concept description

An inclusion of L (or in V) is an expression of one of the forms

u ⊑ v or u ⊑ ¬v, where u and v are basic concept descriptions.

An assertion of L (or in V) is an expression of one of the forms

C(a), ¬C(a), P(a,b), ¬P(a,b), (a ≈ b) and ¬(a ≈ b), where C is an

atomic concept, P is an atomic role and a and b are object names.

We also say that (a ≈ b) and ¬(a ≈ b) are an equality and an

inequality, respectively. A formula of L (or in V) is an inclusion

or an assertion of L.

An interpretation s for L consists of a nonempty set ∆s, the

domain of s, and an interpretation function, also denoted s, with

the usual definition [1]. We use s(u) to indicate the value that s

assigns to an expression u of L. We say that s satisfies a formula

σ of L or that s is a model of σ, denoted s ⊨ σ, iff

 s(u)⊆s(v) if σ is of the form u ⊑ v

 s(u)⊆s(¬v) if σ is of the form u ⊑ ¬v

 s(a)∈s(C) if σ is of the form C(a)

 (s(a),s(b))∈s(P) if σ is of the form P(a,b)

 s(a)=s(b) if σ is of the form (a ≈ b)

 s ⊭θ if σ is of the form ¬θ

Let Σ be a set of formulas of L. We say that: s satisfiesΣ or that s

is a model of Σ, denoted s ⊨ Σ, iff s satisfies all formulas in Σ ; Σ

logically implies σ, denoted Σ ⊨ σ, iff any model of Σ satisfies σ;

Σ is satisfiable or consistent iff there is a model of Σ.

We say that a set of assertions A induces a model of Σ iff the

interpretation s such that a∈s(C) iff C(a)∈A and (a,b)∈s(P) iff

P(a,b)∈A, for each atomic concept C and atomic role P, is a

model of Σ. We abbreviate: “¬⊥” as “⊤” (universal concept),

“(≥1 p)” as “∃p” (existential quantification), “¬(≥n+1 p)” as

“(≤n p)” (at-most restriction) and “u ⊑ ¬v” as “u | v”

(disjunction). By an unabbreviated expression we mean an

expression that does not use such abbreviations.

3.2 Ontologies and Knowledge Bases
We work with several notions built upon DL-Lite core with

arbitrary number restrictions, defined as follows.

Definition 1:

(a) An ontology is a pair O=(V,Σ) such that

(i) V is a finite alphabet, the vocabulary of O, whose

atomic concepts and atomic roles are called the classes

and properties of O, respectively, and

(ii) Σ is a finite set of inclusions in V, the constraints of O.

(b) A knowledge base is a triple KB=(V,Σ,Α) such that

(i) (V,Σ) is an ontology, and

(ii) Α is a finite set of assertions in V.

(c) A data source is a pair DS=(V,A) such that

(i) V is a finite alphabet, and

(ii) Α is a finite set of assertions in V. �

Figure 1. The class hierarchies of APO.

foaf:Agent

mo:CorporateBody

mo:Label

foaf:Group

mo:MusicGroup

foaf:Person
foaf:name

owl:disjointWith

mo:SoloMusicArtist

mo:MusicArtist

foaf:Organization
mo:member
_of xsd:string

Note that we allow equality and inequality assertions to occur as

assertions of a knowledge base or of a data source (to capture

owl:sameAs and owl:differentFrom OWL properties). Example 1

illustrates the concept of ontology.

Example 1: Recall that, in the example of Section 2, we adopted

as domain ontology the Agent-Person Ontology, which

corresponds to the part of Music Ontology depicted in Figure 1.

This ontology is formalized as APO = (VAPO, ΣAPO), where

VAPO = { foaf:Agent, foaf:Person, foaf:Group, foaf:Organization,

mo:MusicArtist, mo:CorporateBody, mo:SoloMusicArtist,

mo:MusicGroup, mo:Label, mo:member_of, foaf:name, xsd:string }

and ΣAPO is the set of constraints shown in Table 2.

Table 2. Constraints of APO (unabbreviated form).

Constraint Informal specification

(≥1 foaf:name) ⊑ foaf:Person The domain of foaf:name is

foaf:Person

(≥1 foaf:name−
) ⊑ xsd:string The range of foaf:name is xsd:string

(≥1mo:member_of) ⊑ foaf:Person The domain of mo:member_of is

foaf:Person

(≥1mo:member_of−)⊑ foaf:Group The range of mo:member_of is

foaf:Group

mo:MusicArtist ⊑ foaf:Agent mo:MusicArtist is a subset of

foaf:Agent

foaf:Group ⊑ foaf:Agent foaf:Group is a subset of foaf:Agent

foaf:Organization ⊑ foaf:Agent

foaf:Organization is a subset of

foaf:Agent

mo:SoloMusicArtist ⊑ foaf:Person

mo:SoloMusicArtist is a subset of

foaf:Person

mo:SoloMusicArtist⊑ mo:MusicArtist mo:SoloMusicArtist is a subset of

mo:MusicArtist

mo:MusicGroup ⊑ mo:MusicArtist

mo:MusicGroup is a subset of

mo:MusicArtist

mo:MusicGroup ⊑ foaf:Group

mo:MusicGroup is a subset of

foaf:Group

mo:CorporateBody ⊑ foaf:Organization mo:CorporateBody is a subset of

foaf:Organization

mo:Label ⊑ mo:CorporateBody mo:Label is a subset of

mo:CorporateBody

foaf:Person ⊑ ¬foaf:Organization

foaf:Person and foaf:Organization are
disjoint

foaf:Person ⊑ ¬(≥2 foaf:name) Each person has at most one name

3.3 Constraint Graphs
The notion of constraint graph captures the structure of sets of

constraints and is fundamental to construct the constraints of a

data mashup specification. We introduce this notion with the

help of an example and refer the reader to [5] for the details.

Note that the nodes of a constraint graph G are labeled with

expressions and their complements. We say that the complement

of a basic concept description e is ¬e, and vice-versa. If c is a

concept description, then c denotes the complement of c. We

say that node u is a ⊥-node of G iff there are paths from node u

to nodes v and v , for some expression v. If node u is a ⊥-node

then we say that node u is a ⊤-node.

Example 2: Consider the set of constraints ΣAPO, shown in Table

2. Figure 2 depicts the graph G(ΣAPO) that represents ΣAPO, which

is constructed as follows. For each inclusion u ⊑ v in ΣAPO, there

are nodes in G(ΣAPO) labeled with u, u , v and v , and arcs from

node u to node v and from node v to node u . For example, the

constraint foaf:Person ⊑ ¬foaf:Organization generates two arcs: an

arc from node foaf:Person to node ¬foaf:Organization and an arc

from node foaf:Organization to node ¬foaf:Person.

G(ΣAPO) is such that, if there is a path from node u to node v,

then ΣAPO logically implies u ⊑ v. For example, since there is a

path from node mo:CorporateBody to node ¬(≥2 foaf:name), ΣAPO

logically implies mo:CorporateBody ⊑ ¬(≥2 foaf:name). Note that

there is a path from node (≥2 foaf:name) to nodes foaf:Person and

¬foaf:Person. Hence, we have that ΣAPO logically implies

(≥2 foaf:name) ⊑ foaf:Person and (≥2 foaf:name) ⊑ ¬foaf:Person.

Thus, ΣAPO logically implies (≥2 foaf:name) ⊑ ⊥, that is, node

(≥2 foaf:name) is a ⊥-node of G(ΣAPO).

3.4 Open Ontology Fragments
After the user selects classes and properties from the domain

ontology, the mashup service must compute a set of constraints

that captures their semantics. More precisely, if W is an alphabet,

let Σ / W denote the set of formulas that use only classes and

properties in W and that are logically implied by Σ.

Definition 2: Let O = (VO ,ΣO) and F = (VF ,ΣF) be two

ontologies. Then, F is an open ontology fragment of O iff

(i) All classes and properties in VF occur in VO, and

(ii) ΣF is tautologically equivalent to ΣO /VF. �

The next example illustrates how to generate ΣF so that the

second requirement is satisfied, using the graph representing ΣO.

Example 3: Recall that, in the example of Section 2, the mashup

is formalized as the ontology M0=(V0,Σ0), where

V0 = { mo:MusicArtist, mo:SoloMusicArtist, mo:Label, foaf:name,

xsd:string }.

We may compute the constraints in Σ0, shown in Table 3, as

follows. First mark the nodes of the constraint graph of ΣAPO

labeled with expressions that use only symbols in V0 (in shaded

boxes in Figure 2). Among such nodes, detect which ones are

⊥-nodes and ⊤-nodes (in dashed border lines in Figure 2).

Construct the constraints in Σ0 as follows. Let Q be a marked

⊥-node and u be an expression which labels Q and which uses

only symbols in V0. Add a constraint of the form u ⊑ ⊥ to Σ0, as

xsd:string (≥1 foaf:name−) ¬(≥1 foaf:name−) ¬xsd:string

(≥1 mo:member_of)

¬(≥1 mo:member_of)

(≥2 foaf:name) ¬(≥2foaf:name)

¬foaf:Person

Figure 2. Graph G(ΣΣΣΣAPO) representing the constraints of APO.

foaf:Organization foaf:Group

(≥1 mo:member-of−) ¬(≥1 mo:member-of−)

mo:MusicArtist

foaf:Person

¬foaf:Group

mo:SoloMusicArtist ¬mo:SoloMusicArtist

¬(≥1 foaf:name)

¬mo:MusicGroup

mo:MusicGroup

¬mo:MusicArtist

foaf:Agent ¬foaf:Agent

mo:CorporateBody

mo:Label

¬foaf:Organization

¬mo:CorporateBody

¬mo:Label

(≥1 foaf:name)

in line 1 of Table 3. Let M and N be two marked nodes, which

are not a ⊥-node or a ⊤-node, such that there is a path from M to

N. Let u be a positive expression and v be an expression which

label M and N, respectively, and which use only symbols in V0.

Add a constraint of the form u ⊑ v to Σ0, as in lines 2, 3, 4 and 5

of Table 3. However, if v ⊑ u is in Σ0, do not add u ⊑ v to Σ0.

Table 3. Constraints of M0 (unabbreviated form).

Constraint Informal specification

1 (≥2 foaf:name) ⊑ ⊥ No individual has more than one
name

2 mo:Label ⊑ ¬(≥1 foaf:name) Individuals in mo:Label have no
name

3 (≥1 foaf:name−
) ⊑ xsd:string The range of foaf:name is xsd:string

4 mo:SoloMusicArtist ⊑ ¬mo:Label mo:SoloMusicArtist and mo:Label
are disjoint

5 mo:SoloMusicArtist ⊑ mo:MusicArtist mo:SoloMusicArtist is a subclass of

mo:MusicArtist

4. DATA MASHUPS

4.1 A Conceptual Framework for Mashups

A data mashup is formalized as follows.

Definition 3: Let DO=(VDO,ΣDO) be the domain ontology.

(a) We say that Φ=((V,Σ,Α),(Α1,…,Αn)) is a data mashup of DO

iff

(i) a =(Α1,…,Αn) is a finite list of finite sets of assertions

whose atomic concepts and atomic roles occur in V;

(ii) KB=(V,Σ,Α) is a knowledge base such that

a. (V,Σ) is an open ontology fragment of DO, where

V is called the mashup vocabulary and Σ is called

the set of mashup constraints.

b. Α is a finite set of assertions whose atomic

concepts and atomic roles occur in V;

furthermore, there is a set of assertions

ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable

and Σ ∪ ΒΒΒΒ logically implies Α.

(b) We say that Φ is a positive data mashup with equalities of

DO iff a is a finite list of finite sets of positive assertions,

possibly including equalities. �

The ontology (V,Σ) is a conceptual model of what the user

observes. The vocabulary V represents the classes and properties

in VDO that the user selected; the set of constraints Σ is computed

by the mashup service, based on V and ΣDO, in such a way that

(V,Σ) is an open ontology fragment of DO, in order to capture

what constraints of the domain ontology apply to the classes and

properties the user selected.

For i=1,…,n, the set Αi models the data obtained from the ith

data source to populate the classes and properties in V. Note that

Σ ∪ Α1 ∪…∪ Αn may not be satisfiable, as discussed in Section

2.

The set of assertions Α represents the data that the user observes.

We take Α as a logical consequence of Σ and a subset ΒΒΒΒ of

Α1 ∪…∪ Αn, provided that Σ ∪ ΒΒΒΒ is satisfiable. Note that Α is

therefore a logical consequence of Σ ∪ Α1 ∪…∪ Αn using a

simple paraconsistent notion of logical implication to account for

inconsistencies.

4.2 Overview
Consider the following problem, which we call MASHUP:

Instance: An ontology (V,Σ), built upon DL-Lite core with

arbitrary number restrictions, and a list Α1,…, Αn of finite sets of

assertions in V.

Question: What is the largest set of assertions Α whose atomic

concepts and atomic roles occur in V such that there is a set of

assertions ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable and

Σ ∪ ΒΒΒΒ logically implies Α?

We can prove that MASHUP is NP-Complete by a reduction of

the satisfiability problem of
N

coreLite-DL knowledge bases with

equality and inequality constraints [1]. In view of this result, we

present a heuristic procedure that computes consistent mashups

(not necessarily maximal) in polynomial time for sets of positive

assertions. The heuristic procedure has three stages and explores

a strategy to minimize the cost of consistency checking. The

stages are implemented by the procedures MashupAnalysis,

ConsistentLocalData and ConsistentMashupData.

During the first stage, the MashupAnalysis procedure computes

the set Σ of mashup constraints so that (V,Σ) is an open fragment

of DO. At the second stage, each wrapper service separately

invokes the ConsistentLocalData procedure to preprocess the

assertions obtained from the data source the wrapper

encapsulates to avoid inconsistencies w.r.t. Σ. In the third stage,

the ConsistentMashupData procedure analyses the combined

data passed by the wrappers to create a final set of assertions that

is consistent with Σ.

4.3 Consistency Services at the Wrapper
Let DO=(VDO,ΣDO) be the domain ontology, V be the mashup

vocabulary and Σ be the mashup constraints. For i=1,…,n, the

wrapper of the ith data source first obtains a finite set Αi of

positive assertions in V, including equalities. The wrapper calls

the ConsistentLocalData procedure (see Figure 3) to compute

the completion of Ai w.r.t. Σ, denoted comp[Ai,Σ], defined as: (i)

the smallest finite set that contains Ai; (ii) uses only individuals

that occur in Ai; and (iii) induces a finite model of Σ.

Condition (i) corresponds to the goal that comp[Ai,Σ] should

expand Ai in the least possible way. Condition (ii) reflects the

idea that comp[Ai,Σ] should not artificially introduce new

individuals (created perhaps with the help of Skolem functions).

Finally, condition (iii) captures the fact that we need to construct,

and pass to the user, a finite set of assertions that represent data

consistent with Σ. It is not always possible to compute

comp[Ai,Σ] satisfying all three conditions (this discussion is

outside the scope of this paper).

As an example, returning to Section 2, since mo:SoloMusicArtist is

a subclass of mo:MusicArtist, the ConsistentLocalData procedure

creates an assertion of the form mo:MusicArtist(a), if a wrapper

obtains mo:SoloMusicArtist(a) from its data source.

In the presence of equalities, we also have to consider

equivalence classes of object names. In Table 1, the equality S1.4

(expressed using owl:sameAs) indicates that “URI4” and “URI6”

are equivalent, and S2.4 that “URI7” and “URI5” are equivalent.

We use [o] to denote the equivalence class an object name o

belongs to.

Let A be a set of assertions, including equalities. The set of

equivalence classes of A, denoted [A], is the set of equivalence

classes of the object names that occur in A induced by the

equalities in A. A normalization function for A is a function n

that maps each equivalence class E in [A] to an individual in E.

The normalization of A w.r.t. n is the set of assertions, excluding

equalities, obtained by replacing each occurrence of an object

name a (of an equivalence class [a]) in an assertion in A

(excluding equalities) by n([a]).

4.4 Computing the Final Mashup
Now we describe the ConsistentMashupData procedure that

implements a greedy strategy based on an ordering of the

assertions, induced by an ordering of the data sources and, within

the same data source, induced by an ordering of the symbols in

the alphabet, computed from the structure of the constraint graph

(equalities have precedence over the other assertions).

Before ConsistentMashupData is called, the Prepare

procedure orders the symbols in V as follows. It constructs the

constraint graph G(Σ) and creates a topological sort M of the

nodes in G(Σ) labeled with positive expressions, from sinks to

sources, excluding the ⊥-nodes and ⊤-nodes. Then, Prepare

sorts the symbols in V (excluding symbols that represent XML

data types), creating a list U which is coherent with M, that is, if

M appears before N in M, then all symbols that appear in

expressions that label M occur in U before all symbols that

appear in expressions that label N, but not in expressions that

label M. The ordering of the symbols in U coherently with a

topological sort of the nodes of the constraint graph helps healing

inconsistencies in much the same way as the

ConsistentLocalData procedure does.

ConsistentMashupData (in Figure 4) receives as input U, Σ and

a = (Α1,…,Αn). It outputs U, perhaps with new object names, and

a finite set of assertions Α in V such that Σ ∪ ΒΒΒΒ implies Α, for

some ΒΒΒΒ ⊆ Α1 ∪…∪ Αn such that Σ ∪ ΒΒΒΒ is satisfiable.

ConsistentMashupData first calls ConstructModel (in Figure

5), which calls ProcessEqualities and ProcessAssertions (in

Figures 6 and 7) to construct a set e of equivalence classes of

object names, using the equalities in Αi, and a model s of Σ,

using the other assertions in Αi, for each i=1,…,n. In each

iteration, these two procedures check if s remains a model of

Σ by testing, for each constraint e ⊑ f of Σ, if s(e) ⊆⊆⊆⊆ s(f). Finally,

ConsistentMashupData calls ConstructMashup (in Figure 8)

to create the set of assertions Α of the mashup.

Note that Σ ∪ Α is satisfiable since s is constructed as a model of

Σ and since Α is the set of (positive) assertions that represent s

and e. Furthermore, let ΒΒΒΒ be the set of assertions actually used to

construct s and e in the procedure. Σ ∪ ΒΒΒΒ logically implies Α, by

the construction of s and e in the procedure.

We illustrate how ConsistentMashupData operates using the

example in Section 2. Recall that APO is the domain ontology

and that the mashup vocabulary is V = { foaf:name, xsd:string,

mo:Label, mo:MusicArtist, mo:SoloMusicArtist }. Also recall from

Example 3 that the mashup constraints are:

Σ = { (≥2 foaf:name) ⊑ ⊥, mo:Label ⊑ ¬(≥1 foaf:name),

(≥1 foaf:name−) ⊑ xsd:string, mo:SoloMusicArtist ⊑ ¬mo:Label,

mo:SoloMusicArtist ⊑ mo:MusicArtist }

ConsistentDataMashup (U , Σ, a ; U , Α)

input: U – a list of the symbols in V0, where V0 ⊆ VDO

 Σ – a set of constraints

 a = (Α1,…,Αn) – a list of finite sets of positive assertions in V0

output: U – the original list U perhaps with new object names

 Α – a set of assertions that represents the mashup

begin // construct a model s of Σ and

 ConstructModel (U , Σ , a ; s , e) // a set of equivalence classes e

 ConstructMashup (s , e , U ; U , Α) // construct Α and adjust U

 return U , Α

end

Figure 4. Procedure ConsistentDataMashup.

ConstructModel (U , Σ , a ; s , e)

 // U, Σ and a = (Α1,…,Αn) as in ConsistentDataMashup

begin // s is a model of Σ and e is a set of equivalence classes

 e ={{a} / a is an individual that occurs in Α1,…,Αn} // initialize e

 for each atomic concept or atomic role v in U do s(v) =∅; // initialize s

 for each i=1 to n do

 begin ProcessEqualities (Σ , Αi , s , e ; s , e);

 Let Bi contain all assertions in Αi which are not equalities;

 ProcessAssertions (U , Σ , Bi , s , e ; s)

 end

 return s , e

end

Figure 5. Procedure ConstructModel.

ProcessEqualities (Σ , Αi , s , e ; s , e)

 // Σ and Αi are as in ConsistentDataMashup

begin // s is a model of Σ and e is a set of equivalence classes

 for each equality (a ≈ b) in Αi do

 begin change e so that a and b become
 members of the same equivalence class;

 change s to accommodate the new version of e;

 if s is still a model of Σ // a simple test

 then commit the changes to s and e // accept (a ≈ b)

 else reject the changes to s and e // ignore (a ≈ b)

 end

 return s , e

end
Figure 6. Procedure ProcessEqualities.

ConsistentLocalData (Ai , Σ ; comp[Ai,Σ])

begin

 initialize T with a normalization of Ai;

 mark all assertions in T as unprocessed;

 for each unprocessed assertion P(a,b) in T do // role assertions

 begin add assertions of the form (≥1 P)(a) and (≥1 P
−
)(b) to T,

 marked as unprocessed;

 mark P(a,b) as processed

 end

 while there is an unprocessed assertion e(a) in T do

 // class assertions

 begin let M be the node of G(Σ) labeled with e;

 for each other expression f that also labels M do

 // Σ logically implies e ≡ f

 add an assertion f(a) to T, if not already in T,
 marked as unprocessed;

 for each node N such that (M,N) is an arc of G(Σ) do

 // Σ logically implies e ⊑ f

 for each expression g that labels N do

 add an assertion g(a) to T, if not already in T,
 marked as unprocessed;

 mark e(a) as processed

 end

 comp[Ai,Σ] = T ∪ { (a ≈ b) / (a ≈ b) is an equality in Ai } ;

 return comp[Ai,Σ]

end

Figure 3. Procedure ConsistentLocalData.

Prepare computes G(Σ) (see Fig. 2. Next, Prepare creates a

topological sort M of the nodes in G(Σ) labeled with positive

expressions. Finally, Prepare sorts the symbols in V, creating a

list U, which is coherent with M. Assume that U is

U = (mo:MusicArtist, mo:SoloMusicArtist, mo:Label, foaf:name).

Assume that Β1 and Β2, shown in Tables 1 and 4, are the sets of

assertions passed by the wrappers of the data sources µµµµ1 and µµµµ2

(the assertions in Table 4 are derived by the wrappers from those

in Table 1). Also assume that µµµµ1 has precedence over µµµµ2.

Table 4. Assertions expressing data returned from µµµµ1 and µµµµ2.

Assert. derived from µµµµ1 Assert. derived from µµµµ2 #

S1.5 mo:MusicArtist(“URI5”) mo:MusicArtist(“URI6”) S2.5

S1.6 mo:MusicArtist(“URI4”)

ConsistentMashupData calls ConstructModel, which

processes the assertions in Β1 before those in Β2 and selects the

symbols in the order in which they appear in U.

ConstructModel first calls ProcessEqualities to process the

equalities in Β1, creating the equivalence classes {“URI4”,“URI6”},

{“URI5”} and {“Janis Joplin”}. Then, it calls ProcessAssertions to

process the other assertions in Β1, resulting in

s(mo:MusicArtist)=s(mo:SoloMusicArtist)={{“URI4”,“URI6”},{“URI5”}

s(mo:Label) = ∅

s(foaf:name) = {({“URI4”,“URI6”},{“Janis Joplin”})}.

Next, ConstructModel calls ProcessEqualities to process the

equalities in Β2. To process S2.4, ProcessEqualities tentatively

changes {“URI5”} to {“URI5”,“URI7”} and s(mo:MusicArtist) and

s(mo:SoloMusicArtist) to {{“URI4”,“URI6”},{“URI5”,“URI7”}}. Since s

remains a model of Σ0, ProcessEqualities commits these

changes. Then, ConstructModel calls ProcessAssertions to

process the other assertions in Β2. The interpretation

s(mo:MusicArtist) = s(mo:SoloMusicArtist)

 = {{“URI4”,“URI6”},{“URI5”,“URI7”}}

remains unchanged after processing S2.2. The interpretations

s(mo:Label)=∅ and

s(foaf:name)={({“URI4”,“URI6”}, {“Janis Joplin”})}

also remain unchanged, since S2.1 and S2.3 cannot be considered

without leading to consistency violations. Indeed, adding

{“URI5”,“URI7”} to s(mo:Label) would violate

mo:SoloMusicArtist⊑¬mo:Label

and adding ({“URI4”,“URI6”},{“Janis Lyn Joplin”}) to s(foaf:name)

would violate

(≥2 foaf:name) ⊑ ⊥

Finally, ConsistentMashupData calls ContructMashup, which

uses s and e to create the final set of assertions Α. For example,

the equivalence classes {“URI4”,“URI6”} and {“URI5”,“URI7”}

generate

“URI4” owl:sameAs “URI6” and “URI5” owl:sameAs “URI7”

and s(mo:SoloMusicArtist)={{“URI4”,“URI6”},{“URI5”,“URI7”}} induces

mo:SoloMusicArtist(“URI4”) and mo:SoloMusicArtist(“URI5”).

5. CONCLUSIONS
We investigated the problem of creating data mashups from

potentially inconsistent sources. We first formalized the notion of

data mashups and then described a heuristic procedure to

compute consistent data mashups. As for current work, we are

implementing a data mashup service that includes the approach.

6. REFERENCES
[1] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev,

M. The DL-Lite family and relations. J. of Artificial

Intelligence Research 36, 1–69.

[2] Bizer, C., Schultz, A. The R2R Framework: Publishing and

Discovering Mappings on the Web. First Int’l. Workshop on

Consuming Linked Data (COLD 2010) (Nov. 2010).

[3] Bizer, C., Cyganiak, R., Heath, T. How to Publish Linked

Data on the Web. (http://www4.wiwiss.fu-

berlin.de/bizer/pub/LinkedDataTutorial/) (2007).

[4] Bizer, C., Heath, T., Berners-Lee, T. Linked Data – The

Story So Far. In: Heath, T., Hepp, M., and Bizer, C. (eds.).

Int’l. J. on Semantic Web and Information Systems (2009).

[5] Casanova, M.A., Lauschner, T., Leme, L. A. P. P.,

Breitman, K. K., Furtado, A. L., Vidal, V. M. P. Revising

the Constraints of Lightweight Mediated Schemas. DKE

v.69 (2010) , 1274–1301.

[6] Casanova, M.A., Breitman, K. K., Furtado, A. L., Vidal, V.

M. P., Macêdo, J.A.F. The Role of Constraints in Linked

Data. In: Proc. ODBASE 2011, 781–799.

[7] Fan, W., Geerts, F. and Xibei, J. A Revival of Integrity

Constraints for Data Cleaning. In: Proc. VLDB´08, 24–30.

[8] Hogan, A. Integrating Linked Data through RDFS and

OWL: Some Lessons Learnt. In: Proc. 5th International

Conference on Web Reasoning and Rule Systems (2011).

[9] Raimond, Y., Giasson, F. Music Ontology Specication.

(Nov. 2010).

ProcessAssertions (U , Σ , Bi , s , e ; s)

 // U=(v1,…,vm) ; Σ as in ConsistentDataMashup

begin // Bi are the positive assertions in Αi, except equalities

 for k=1 to m do // s is a model of Σ and e is a set of equiv. classes

 for each assertion σ in Bi about vk do // expand s

 begin // σ is a positive class assertion

 if vk is an atomic concept C and σ is of the form C(a)

 then add [a] to s(C) // tentatively add [a] to s(C)

 // σ is a positive role assertion

 if vk is an atomic role P and σ is of the form P(a,b)

 then add ([a],[b]) to s(P); // tentatively add ([a], [b]) to s(P)

 if s is still a model of Σ // a simple test

 then commit the changes to s // accept changes to s

 else reject the changes to s // reject changes to s

 end

 return s
end

Figure 7. Procedure ProcessAssertions.

ConstructMashup (s , e , U ; U , Α)

 // s is a model of Σ and e is a set of equiv. classes

begin Initialize Α = ∅; // U and Α are as in ConsistentDataMashup

 add equalities to Α to express the equivalence classes in e;

 // add other assertions in Α

 for each atomic concept C in U do // one individual per equiv. class

 for each equivalence class {a1,..,ar} in s(C) do

 begin add C(a1) to Α and

 add a1,..,ar to U, if not already in U end;

 for each atomic role P in U do // one individual per equiv. class

 for each pair of equivalence classes ({a1,..,ar},{b1,..,bs}) in s(P) do

 begin add P(a1,b1) to Α and

 add a1,..,ar,b1,..,bs to U, if not already in U end;

 return U , Α

end

Figure 8. Procedure ConstructMashup.

