Learning Objects: Separating Content from Didactics
Laura Maria Coutinho1,2, Gilda Helena B. de Campos1,
Claudia L. R. da Motta2, Marco A. Casanova3

1CCEAD – Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de S. Vicente, 225 – 22.453-900 – Rio de Janeiro – RJ – Brazil

2Núcleo de Computação Eletrônica – Universidade Federal do Rio de Janeiro
Caixa Postal: 2324 – 20001-970 – Rio de Janeiro – RJ – Brazil

3Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de S. Vicente, 225 – 22.453-900 – Rio de Janeiro – RJ – Brazil

{\texttt{laura, gilda}@ccead.puc-rio.br, claudiam@nce.ufrj.br,
casanova@inf.puc-rio.br}

Abstract. Investigating strategies to structure courses becomes a central question in the context of Web-based course development. This paper then proposes a collection of concepts that facilitates reuse of the material already developed, thereby reducing production cost. The proposal is based on the idea that one can profitably specialize learning objects into content objects and didactic objects. Then, a course is formalized as an aggregation of content and didactic objects with specific properties. To validate this approach, the paper also includes a comprehensive set of examples.

Key words: Learning Objects, Web-based courses, Learningware, Object reuse.

Resumo. A investigação de formas alternativas para estruturar cursos torna-se uma questão central no contexto de cursos baseados na Web. Este trabalho propõe então uma série de conceitos com o objetivo de facilitar o reuso de material já produzido e, desta forma, reduzir o custo de produção. A proposta baseia-se na ideia de que é possível especializar objetos de aprendizagem em objetos de conteúdo e objetos didáticos. Um curso é então formalizado como a agregação de objetos de conteúdo e objetos didáticos, com propriedades específicas. Para validar a proposta, o trabalho inclui ainda um conjunto significativo de exemplos.

Palavras-chave: Objetos de aprendizagem, Cursos baseados na Web, Learningware, Reuso de Objetos.
1. Introduction

The term ‘course’ typically recalls a series of expositive classes, intertwined with exercises and quizzes, whereby the teacher verifies how much the student learned. There are notorious variants such as courses structured as sequences of case analysis. The investigation of alternative strategies to structure courses indeed becomes a central question when one investigates how to design Web-based learningware. However, it is not uncommon to see Web-based learningware designed as a mere transposition of course notes into HTML pages. In other words, oral exposition, backed up by class notes, is substituted by HTML pages.

This simple substitution is neither necessary, nor desirable. The Web offers the possibility of interaction and is an instrument for autonomous content search. If used appropriately, the Web facilitates the definition of more sophisticated learningware strategies where the student becomes an active player that creates the content, that is, he or she becomes a co-author of the learning process, guided by his tutor.

Motivated by this brief discussion, we propose in this paper a collection of concepts that facilitates reuse of the material already developed, thereby reducing production cost. Our proposal is based on the idea that one can profit by separating content from didactics or, more precisely, by specializing learning objects into content objects and didactic objects. Then, we formalize a course as an aggregation of content and didactic objects, with specific properties. To validate this approach, we also include in this paper a comprehensive set of examples.

Briefly, a learning object is “a collection of materials that can be used to present and support a single learning objective” [JA02], or “a small instructional component that can be used to support learning in different environments” [NA02a], “any digital resource that can be re-used and that can be helpful in the learning process” [WI03], or still “any (physical) entity, digital or non-digital, that can be used for learning, education or training” [IE02a]. A small instructional component is a module or lesson that covers a specific concept, fact, procedure, process or principle [S003]. Different environments imply that a learning object can be used in distinct learning management systems – LMS – or learning content management systems – LCMS [MA03]. For example, a learning object developed to teach the use of vowels in German can be made accessible through IVLE (Integrated Virtual Learning Environment) [NA02b] and then ported to other LCMSs, such as BlackBoard [BL02], WebCT [WE02] or Aulanet [LU99, PE02a].

Learning objects typically have a set of descriptors, or metadata, that facilitate retrieving them from an object repository [PO03]. Metadata usually adhere to standards [SA02]. For example, Learning Object Model (LOM) [TA03], developed by the IEEE Learning Technology Standards Committee addresses the question of metadata for learning objects [IE02b]. Other projects also address the definition of metadata for learning objects, such as the ARIADNE Project [AR03] and the IMS Learning Resource Meta-data [AN01].

This paper is structured as follows. Section 2 introduces the new classes of learning objects proposed in the paper. Section 3 presents simples examples of the new objects, whereas Section 4 covers more complex examples. Finally, Section 5 contains the conclusions and directions for future search.
2. Specializations of Learning Objects

2.1 Content Objects, Didactic Objects and Didactic Situations

As a first step towards facilitating learningware development, we propose to explicitly separate content from didactic indications about how to use the content, by introducing a richer set of object classes.

As usual, we build more complex objects by aggregation of other objects. We distinguish two forms of aggregation – partial orders and total orders. A partial order is an aggregation O of objects equipped with a reflexive, transitive and anti-symmetric relation $R \subseteq O \times O$; a total order is a partial order such that, for any two objects o_1 and o_2 in O, either $(o_1, o_2) \in R$ or $(o_2, o_1) \in R$, but not both. In both cases, if $(o_1, o_2) \in R$ then we say that o_1 precedes o_2 in R.

In more detail, we define (see Figure 1):

- a content object (CO) has one or more content attributes whose types are of any of the usual media types – text, image, video, etc.... and whose values are pieces of material that the student must consume;
- a didactic object (DO) has one or more didactic attributes, also of the usual media types, but whose values contain instructions for the student of a purely didactic nature;
- an elementary didactic situation (EDS) is either a content object or a didactic object;
- a complex didactic situation (CDS) is an aggregation (a partial or total order) of didactic situations;
- a didactic situation (DS) is an elementary or a complex didactic situation.

Note that we do not use the term learning object to avoid confusion with the published literature. Indeed, we reserve the term learning object to refer to examples outside our context.

![Figure 1 – Class diagram.](image-url)
Although similar in format, content and didactic objects differ on the way they should be understood and used. The learningware designer is responsible for defining the classes of content and didactic objects he will work with, which involves indicating which are the content attributes or didactic attributes of each class. Alternatively, the implementation of the learning objects management system may determine these details.

A didactic situation describes, with the help of the didactic objects it contains, how the student must consume the content objects it includes. A didactic situation models “a set of relations explicitly or implicitly established between a student and a group of students, a given environment and an educational system, whose purpose is to help students acquire knowledge” [BR96]. What characterizes a didactic situation is therefore its intention, that is, the fact that it was defined with the purpose of modeling a learning process.

Didactic situations typically reflect epistemological presuppositions. For example, the major characteristics of didactic situations that adhere to the constructivism approach are: (1) students are responsible for organizing themselves, and for taking decisions, in order to solve the problem that was proposed; (2) students must organize their activities to obtain a result that was previously made explicit or that they may identify themselves; (4) students may resort to different strategies to solve the problem that was formulated; (5) students may establish several social relations – information exchanges, debates, negotiations – with other students or the teacher [LI96].

We refer the reader to sections 3 and 4 for examples of these concepts.

2.2 Syllabus and Course

We now introduce additional object classes that formalize the notions of syllabus and course.

We first model a syllabus as a partial order of terms, or concepts, taken from a given vocabulary. If \(c_1 \) precedes \(c_2 \) in \(S \), we say that \(c_1 \) is a pre-requisite of \(c_2 \).

Figure 2 schematically illustrates the notion of syllabus. Informally, a syllabus is a set of related concepts that represents a conceptual cut of some knowledge area.

A course is a triple \(C=(D, S, r) \) where \(D \) is a didactic situation, \(S \) is a syllabus and \(r \) is a relation that maps components of \(D \) into components of \(S \). We say that \(D \) belongs to \(C \).

We say that a component \(d \) of \(D \) is a component of \(C \) and that \(d \) covers a concept \(c \) of \(S \) iff \(r \) relates \(d \) and \(c \). Note that a component may cover more than one concept, or even none, and that a concept may be covered by more than one course component.

Intuitively, a course is just a didactic situation covering a syllabus, that is, it indicates which components of the didactic situation cover which concepts of the syllabus.

We say that a course \(C=(D, S, r) \) is consistent iff, for every pair of concepts \(c_1 \) and \(c_2 \) of \(S \) such that \(c_1 \) is a pre-requisite of \(c_2 \), if \(d_2 \) is a component of \(D \) that covers \(c_2 \), then there is a component \(d_1 \) of \(C \) that precedes \(d_2 \) in \(C \) and that covers \(c_1 \) in \(C \). We also say that a course \(C=(D, S, r) \) is complete iff, for every concept of \(S \), there is a component of \(C \) that covers it.
Figure 3 schematically illustrates the notion of course. Note that the course in Figure 3 is consistent and complete with respect to the syllabus of Figure 2.

Assume that there exists a repository populated with content objects, didactic objects and didactic situations, perhaps constructed cooperatively by content specialists and instructional designers. Briefly, course construction can be divided into three major stages. Initially, a content specialist will prepare the syllabus by selecting a consistent set of concepts. Next, an instructional designer will start course construction by selecting and combining didactic objects, content objects and didactic situations that cover the concepts expressed in the syllabus and that follow the learning theory adopted. Lastly, the designer will construct the final didactic situation (the major component of the course) by defining the order, or possible orders, that the students may follow to consume the didactic situations constructed in the second stage. Such possible orders must be coherent with the syllabus so as to produce a course that is consistent and complete.

Figure 4 schematically summarizes this process.
3. Examples of Didactic Situations Following Distinct Pedagogical Approaches

Selecting an educational theory is an important decision during learningware creation. For example, an instructionist approach emphasizes information transmission, in a process that privileges knowledge retention by repetition. By contrast, a constructivist approach favors student engagement [HE98] and emphasizes collaboration. In the constructivist approach, the teacher is no longer the provider of a fixed body of information, but a tutor or guide throughout the learning process [PE00]. One of the challenges of creating learningware lies exactly in creating didactic situations that reflect a differentiated pedagogical practice.

This section then presents two didactic situations, together with some of its objects. The first situation follows an instructionist approach, whereas the second follows a constructivist approach.

3.1 Didactic Situation: “Reading Assignment”

The didactic situation “Reading of Text 1”, schematically presented in Figure 5, describes a reading activity based on a given text. It provides a very simple example of the instructional approach.

The didactic object “Reading Assignment”, shown in Figure 5a, has two attributes, “Objective” and “Description”, whose meaning is immediate. This object captures a generic didactic event where text is exposed to the student.
The content object “Text 1”, shown in Figure 5b, has two metadata attributes, “Author” and “Language”, and a content attribute, “Content”, of type “text” (the first few lines of the “Lusíadas”).

The didactic situation “Reading of Text 1” is then defined as an aggregation (a total order) of the didactic object “Reading Assignment” and the content object “Text 1”. Figure 5c illustrates this aggregation as a table, with an indication of the sequence of objects, and Figure 5d, as a tree. Note, from Figure 5c, that this aggregation is a total order, where “Reading Assignment” precedes “Text 1”.

We may indeed create a more complex didactic situation, “Reading of Two Texts”, which illustrates object reuse, albeit in a simple form. This didactic situation, schematically presented in Figure 6, is defined as an aggregation (a total order) of 5 objects. The object “Reading of Text 1” was defined in Figure 5. The object “Reading of Text 2” is similarly defined as an aggregation again of the didactic object “Reading Assignment”, but with a second text (omitted here for brevity). The objects “Pre-Test 1”, “Reading Comprehension 1” and “Test 1” are elementary didactic situations constructed from the (generic) didactic objects, “Pre-test”, “Reading Comprehension” and “Test”, respectively, and specific content objects related to the texts in question (all again omitted for brevity).
3.2 Didactic Situation: “Project Assignment”

The didactic situation “Project Assignment” exemplifies the constructivist approach. It is defined by multiple aggregations of didactic objects, with no content object involved. The didactic objects used have an intentional character that emphasizes the role of the students as knowledge seekers, rather than the role of the tutor as a provider of answers and solutions [FA99]. The nested tables in Figure 7 schematically indicate the aggregations used to construct “Project Assignment”. That is, for example, the didactic situation “Research”, labeled “4”, is an aggregation of 5 didactic objects, labeled “4.1” through “4.5”. Figures 8 to 13 detail some of the didactic objects used in “Project Assignment”.

Intuitively, a project assignment is defined much like a script. It starts with the definition of a theme, proposed by the student or the tutor. The theme may reflect a question to be explored or it may be the starting point of a process that encourages connecting phenomena, for example. Once the theme is defined, an initial assessment of the situation must be carried out, which means answering two fundamental questions: what is unknown and what is already known about the theme. The next step is to design a conceptual map that decomposes the initial theme into simpler concepts. These activities correspond to the didactic objects shown in Figures 8 to 10.

The search for new information may resort to a variety of resources: visits, interviews, laboratory experiments, etc. Once new information is obtained, it must be formatted, either individually or collectively. In this step, students typically validate the information obtained, producing a well-documented summary. They should distinguish between hypothesis, theories, opinions, as well as verify the coherence, consistency and validity of the information obtained. This step therefore exercises the following skills, among others: to classify, to determine priorities, to represent, to synthesize. Figures 11 and 12 illustrate didactic objects defined along these lines.

While the search for new information may favor student autonomy, cooperative work is fundamental to achieve success in the didactic situation “Discussing the Information Collected”, shown in Figure 13.

<table>
<thead>
<tr>
<th>Project Assignment</th>
<th>1 Presentation</th>
<th>1.1 Presenting the theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Planning</td>
<td>2.1 Assessing previous knowledge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Elaborating hypotheses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Preparing a conceptual map</td>
<td></td>
</tr>
<tr>
<td>3 Contract</td>
<td>3.1 Knowing roles and tasks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 Choosing the coordinator and the editor</td>
<td></td>
</tr>
<tr>
<td>4 Research</td>
<td>4.1 Gathering Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Analyzing Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Selecting Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 Expanding the conceptual map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 Presenting the information selected</td>
<td></td>
</tr>
<tr>
<td>5 Production</td>
<td>5.1 Discussing the information selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Summarizing the information selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 Organizing the information sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4 Publishing the results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4.1 Preparing a presentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4.2 Writing a report</td>
<td></td>
</tr>
<tr>
<td>6 Evaluation</td>
<td>6.1 Summarizing the script followed</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7 – Didactic Situation “Project Assignment”.
Assessing previous knowledge

<table>
<thead>
<tr>
<th>Skill</th>
<th>Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>assess what is already know about the theme</td>
</tr>
<tr>
<td>Result</td>
<td>a list of what is already known about the theme</td>
</tr>
<tr>
<td>Interaction</td>
<td>use of a discussion forum</td>
</tr>
</tbody>
</table>

Figure 8 – Didactic Object “Assessing previous knowledge”.

Elaborating hypotheses

<table>
<thead>
<tr>
<th>Skill</th>
<th>Identify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>identify which are the doubts about the theme</td>
</tr>
<tr>
<td>Result</td>
<td>a list of the doubts about the theme</td>
</tr>
<tr>
<td>Interaction</td>
<td>use of a discussion forum</td>
</tr>
</tbody>
</table>

Figure 9 – Didactic Object “Elaborating hypotheses”.

Preparing a conceptual map

<table>
<thead>
<tr>
<th>Skill</th>
<th>correlate concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>prepare a conceptual map relating the known concepts</td>
</tr>
<tr>
<td>Result</td>
<td>publication of the concept map</td>
</tr>
</tbody>
</table>

Figure 10 – Didactic Object “Preparing a conceptual map”.

Gathering Information

<table>
<thead>
<tr>
<th>Skill</th>
<th>Identify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>search documents related to the theme</td>
</tr>
<tr>
<td>Interaction</td>
<td>publishing the documents in a common area</td>
</tr>
</tbody>
</table>

Figure 11 – Didactic Object “Gathering Information”.

Selecting Information

<table>
<thead>
<tr>
<th>Skill</th>
<th>elaborate criteria and select information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>choose, among the documents obtained, which are the most pertinent to the theme</td>
</tr>
<tr>
<td>Result</td>
<td>a list of the documents selected</td>
</tr>
<tr>
<td>Interaction</td>
<td>use of a discussion forum</td>
</tr>
</tbody>
</table>

Figure 12 – Didactic Object “Selecting Information”.

Discussing the information selected

<table>
<thead>
<tr>
<th>Skill</th>
<th>work cooperatively</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>discuss the document selected</td>
</tr>
<tr>
<td>Result</td>
<td>A log of the discussion</td>
</tr>
<tr>
<td>Interaction</td>
<td>use of a discussion forum</td>
</tr>
</tbody>
</table>

Figure 13 – Didactic Object “Discussing the information selected”.
4. Additional Examples of Didactic Situations

The published literature and reference Web sites on learningware design provide innumerable examples of learning objects, complete courses and best practices. We therefore selected three widely different examples to illustrate how they can be profitably reinterpreted in our conceptual framework.

We first describe each example in its original terms. Then, we show how to break the example into didactic and content objects. Finally, we show how to reconstruct the original example as a didactic situation. By doing so, we explicitate the didactic aspects hidden in the example and create smaller objects that are simpler to re-use.

4.1 An Example from RIVED

This section translates, to our concepts, one example taken from RIVED, the “Experiment with Theodolites” learning object. RIVED stands for Red Internacional Virtual de Educación [RI03, SE03] and is a partnership program involving several Latin American countries to develop learning objects, involving animation and simulation. It currently focuses on the teaching of Sciences and Mathematics for High School.

The “Experiment with a Theodolite” learning object simulates measuring the width of a lake with the help of a theodolite, as Figure 14 illustrates. The student should point the (virtual) theodolite towards an object A he knows the distance from his position O, and then towards a point B he wishing to measure the distance from his position. The theodolite accurately measures the angle α between these two directions. By constructing a triangle, with the angle α he just measured and the known distance from O to A, he is able to determine the distance from O to B [NU02].

We model this learning object as follows. We first define a separate content object, “Description of the experiment with a theodolite”, that describes the specific (virtual) experiment (Figure 15). Then, we define a didactic object, “Problem-situation, modeled using virtual reality”, that captures the essence of using computer simulations in a learning process (Figure 16). Finally, we define a didactic situation, “Problem-situation: Experiment with a Theodolite”, by aggregating these two objects (Figure 17).

![Figure 14 – Experiment with a Theodolite. [NU02]](image)
4.2 Example of a Web-based Course

This section translates, to our concepts, a Web-based course developed at CCEAD/PUC-Rio - Coordenação Central de Educação a Distância da Pontifícia Universidade Católica do Rio de Janeiro [CC03]. The course is about Constitutional Law, at the extension level, and covers: the purpose and importance of Constitutional Law; the organization of the Brazilian government; the Brazilian Constitution of 1988; the fundamental rights and guarantees.

The course is organized as a sequence of 4 groups of 4 activities. Moreover, the didactics of the groups is regular, in the sense that the i^{th} activities of each group, for $i=1,...,4$, contain the same instructions for the students.

Ignoring the syllabus, this course is easily re-interpreted as a didactic situation C aggregating 4 didactic situations, $G_1 \ G_2 \ G_3 \ G_4$. For $i=1,...,4$, the didactic situation G_i is again defined as an aggregation of 4 didactic situations, $SD_{i,1} \ SD_{i,2} \ SD_{i,3} \ SD_{i,4}$. Each didactic situation $SD_{i,j}$ is in turn the aggregation of one content object $C_{i,j}$ and one didactic object D_j. Note that D_j is the same didactic object for all four groups, for $j=1,...,4$.

Figures 18, 19 and 20 illustrate how SD_{11} is defined and Figure 21 shows the external format of SD_{11}.
4.3 Cisco’s Learningware Design Strategy

Cisco Corporation developed a well-succeeded methodology for learningware development, based on learning objects [CI03]. The methodology was already internally applied to over 80 courses, using more than 1,500 reusable learning objects and more than 10,000 reusable information objects.

A reusable information object (RIO) has content items, practice items and assessment items, as illustrated in Figure 22a. A RIO also has a simple objective.

A reusable learning object (RLO) is a combination of an overview, a summary, an evaluation, and from 5 to 9 (7 ± 2) RIOs, as illustrated in Figure 22b. A RLO also has a simple objective. When used in a RLO, the objective of the RIO must be aligned with that of the RLO.

To help content standardization, RIOs are classified into 5 types (see Figure 22c): concept, fact, procedure, process and principle. Each of these types has a template that authors should follow when developing a RIO.
The strategy for using RLOs induces a simple, two-level hierarchy. From the perspective of the student, the term “Lesson” characterizes a RLO and the term “Topic” denotes each RIO, as shown in Figure 22d.

The translation of these ideas to our concepts is straightforward, but deserves a few comments. In the simplest approach, the items of a RIO, as well as its objective, would be treated as content objects. A specific RIO would therefore be a didactic situation defined by aggregating an objective and a list of items. Likewise, overviews, summaries and evaluations used in RLOs would be treated as content objects. A specific RLO would be defined as a didactic situation aggregating an overview, 5 to 9 RIOs, a summary and an evaluation.

More sophisticated approaches are possible. For example, we could create specific didactic objects that capture the didactic aspects of the various types of items, RIOs and even RLOs, and treat these objects as didactic situations whose definition involves such didactic objects.

The final decision has to balance expressiveness with reuse. Indeed, increasing the sophistication and expressiveness of the model also increases the diversity of objects and, most likely, decreases the chances of reusing objects and may even confuse students.
5. Conclusions

Although technology is an important issue, the development of Web-based courses should focus on the learner needs. The investigation of alternative ways to conduct or structure courses therefore becomes a central question, moderated by other equally important concerns, such as production time and cost.

These observations motivated us to introduce specializations of learning objects, that we called content objects and didactic objects. We then modeled a course as an aggregation of these objects, covering a syllabus. Separating content from didactics facilitates course structuring and reuse of the learning objects.

As directions for future research, we may indicate defining an ontology for didactic objects and specifying a learning objects management system that offers an interface to define content and didactic objects and to map them into dynamic HTML pages.

References

http://www.imsglobal.org/metadata/imsmdv1p2/imsmd_infov1p2.html (last accessed on 03/26/2004).

