An Analysis of Table Constraints in SQL2
based on the
Entity-Relationship Model

Marco A. Casanova
Alexandre P. de Carvalho
Lorenzo F.G.G.M. Ridolfi

Rio Scientific Center
IBM Brazil
Rio de Janeiro, Brazil

Alberto H.F. Laender

Computer Science Department
Federal University of Minas Gerais
Belo Horizonte, Brazil
Topics

- Preliminaries
- Summary of SQL2 Table Constraints
- The Two-Level ER Model
- Mapping of ER Schemas into SQL2
 - Mapping of Level 0 ER Schemas
 - Mapping of Level 1 ER Schemas
- Optimization
- Conclusions
Preliminaries

- Goal of the Work:
 - Analysis of SQL2 table constraints in the light of the ER model

- Method Used:
 - SQL2 proposal distinguishes two subsets of the language:
 - Entry SQL
 - Intermediate SQL
 - Analysis is based on a two-level ER model

- Contributions:
 - Careful analysis of the mapping of ER schemas into SQL2
 - Suggestion of a minor extension to SQL2 that increases the ability to obtain optimized representations of ER schemas
Summary of SQL2 Table Constraints

- Table constraint definitions:
 - unique constraint definitions
 - referential constraint definitions
 - check constraint definitions

- Constraint checking modes:
 - immediate
 - deferred

For Entry SQL, all constraints are always immediately checked
Summary of SQL2 Table Constraints

- Unique constraint definitions:
 - PRIMARY KEY (not null implicit)
 - UNIQUE (may admit null values)

Entry SQL requires that all attributes of a primary or alternate key do not allow null values

- Referential constraint definitions:
 - match type: (omitted)/FULL
 - delete and update rules:
 CASCADE/SET NULL/SET DEFAULT

Entry SQL does not support either delete or update rules and Intermediate SQL does not support update rules

- Check constraint definitions:
 - specify conditions that the rows of a table must satisfy

Entry and Intermediate SQL allow only simple restrictions
The Two-Level ER Model

- Level 0 ER model:
 - entity schemes
 - relationship schemes
 - hierarchies of specialization for entity schemes

- Level 1 ER model:
 - totality on relationship schemes
 - multiple specialization of entity schemes
 - propagation of deletions and updates
Mapping of Level 0 ER Schemas

- Basic approach:
 - One-to-one mapping which captures references between ER objects through referential constraints

- Example:

```
create table T_EMP
(ID char(5) not null,
NAME char(25),
primary key (ID))

create table T_WORK
(ID char(5) not null,
D# char(3),
primary key (ID),
foreign key (ID) references T_EMP,
foreign key (D#) references T_DEPT)

create table T_DEPT
(D# char(3) not null,
LOCATION char(20),
primary key (D#))
```
Mapping of Level 0 ER Schemas

Conclusions

- Mapping of level 0 ER schemas DOES NOT require:
 - deferred checking
 - unique constraint definitions with support for:
 - alternate keys that allow null values
 - referential constraint definitions with support for:
 - references to alternate keys
 - delete rules
 - SET NULL and SET DEFAULT update rules
 - match type
 - check constraint definitions

- If we do not allow updates on keys, Entry SQL suffices to handle
 the mapping of level 0 ER schemas
Mapping of Level 1 ER Schemas

Handling of Totality

- Case 1: R is total and functional (N:1) on E
 - Completely handled by a referential constraint definition

- Case 2: R is total on E but not functional
 - Requires a check constraint definition
Mapping of Level 1 ER Schemas
Handling of Multiple Specialization

- Requires the use of references to alternate keys

\[A(K) \quad B(L) \]

\[C(K) \quad D(K,L) \quad E(L) \]

\[F(K) \quad G(L) \]

create table T_D
(K char(20) not null,
L char(20) not null,
primary key (K),
unique (L),
foreign key (K) references T_A
on update cascade,
foreign key (L) references T_B
on update cascade)

create table T_G
(L char(20) not null,
primary key (L),
foreign key (L) references T_D(L)
on update cascade)
Mapping of Level 1 ER Schemas

Conclusions

• Mapping of level 1 ER schemas DOES NOT require:
 – unique constraint definitions with support for:
 – alternate keys that allow null values
 – referential constraint definitions with support for:
 – SET NULL and SET DEFAULT update and delete rules
 – match type

but it requires:

 – deferred checking
 – referential constraint definitions with support for:
 – references to alternate keys
 – the CASCADE delete rule
 – the CASCADE update rule, if we permit updates on keys or identifiers
 – check constraint definitions

• If we do not permit updates on keys or identifiers, Intermediate SQL suffices to handle the mapping of level 1 ER schemas; but Entry SQL does not suffice, since the mapping of level 1 ER schemas requires deferred checking and delete rules
Optimization of SQL2 Schemas

- Motivation:
 - one-to-one relational representations of ER schemas are straightforward to obtain, but they contain a potentially large number of inter-relation references that are expensive to check for violations

- Basic optimization heuristics:
 - to collapse a relationship scheme R into an entity scheme E, when R is functional on E
 - to collapse an entity scheme F into an entity scheme E, when F specializes E
Optimization

Example 1: SET NULL delete rule

- ER schema:

```
EMP   N  WORK  1  DEPT
```

• deletions

- SQL2 schema:

```sql
create table T.EMP*
  (ID char(5) not null,
   NAME char(25),
   D# char(3),
   primary key (ID),
   foreign key (D#) references T.DEPT
   on delete set null)
```

```sql
create table T.DEPT
  (D# char(3) not null,
   LOCATION char(20),
   primary key (D#))
```
Optimization

Example 2: check constraint definition

- ER schema:

- SQL2 schema:

 create table T_EMP*
 (same as before)

 create table T_PROJ
 (P# char(3) not null,
 DURATION char (6),
 primary key (P#))

 create table T_DEPT
 (same as before)

 create table T_PAY
 (ID char(5) not null,
 P# char(3) not null,
 primary key (ID),
 foreign key (P#) references T_PROJ
 check ID match (select ID
 from T_EMP*
 where D# is not null))
Optimization

Example 3: SET NULL propagation

- ER schema:

```
EMP  N  WORK  1  DEPT
    |      |      |
    v  1   v
    |      | 1     |
    |      |      |
    v      |
    PROJ
```

- Tentative SQL2 schema:

```sql
create table T_EMP
    (ID char(5) not null,
     NAME char(25),
     D# char(3),
     P# char(3),
     primary key (ID),
     foreign key (D#) references T_DEPT
         on delete set null,
     foreign key (P#) references T_PROJ)

create table T_DEPT
    (D# char(3) not null,
     LOCATION char(20),
     primary key (D#))

create table T_PROJ
    (P# char(3) not null,
     DURATION char(20),
     primary key (P#))
```
Optimization
Example 3: SET NULL propagation

- Problem:
 - the SET NULL option propagates nulls only to attributes of the foreign key

<table>
<thead>
<tr>
<th>T_EMP*</th>
<th>T_DEPT</th>
<th>T_PROJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>NAME</td>
<td>D#</td>
</tr>
<tr>
<td>e1</td>
<td>John</td>
<td>d1</td>
</tr>
<tr>
<td>e2</td>
<td>Mary</td>
<td>d2</td>
</tr>
</tbody>
</table>

- Solution proposed:
 - the SET NULL option should be modified to allow the propagation of nulls to attributes outside the foreign key

 foreign key (D#) references T_DEPT
 on delete set null (D#,P#)
Optimization
Conclusions

- Optimized mapping requires:
 - deferred checking
 - unique constraint definitions with support for:
 - alternate keys that allow null values
 - referential constraint definitions with support for:
 - references to alternate keys
 - the CASCADE and SET NULL delete rules
 - the CASCADE update rule, if we permit updates on keys or identifiers
 - check constraint definitions

- The SET NULL option should be modified to cover a more generalized form of propagation of nulls
Conclusions

- Result of the analysis:
 - Classification of the table constraint features of SQL2

<table>
<thead>
<tr>
<th>Level 0 ER schemas</th>
<th>Entry SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 ER schemas</td>
<td>Intermediate SQL (deferred checking + deletion rules)</td>
</tr>
<tr>
<td>(optimized mapping)</td>
<td>Full SQL (alternate keys with nulls)</td>
</tr>
</tbody>
</table>

- SET DEFAULT and match type are of limited utility to the mapping of ER schemas to SQL2
- SET NULL option should be modified to allow the propagation of nulls to attributes outside the foreign key

- The analysis can be extended to cover other ER concepts, such as multivalued attributes and more complex forms of specialization/generalization