An Algebra of Lightweight Ontologies: Implementation and Applications

Marco A. Casanova

Departamento de Informática, PUC-Rio

NII Shonan Meeting: “Implicit and explicit semantics integration in proof based developments of discrete systems”
Shonan Village Center (SVC), Japan – November 22-25, 2016
Topics

- Introduction
- A Formal Framework
- Operations over Ontologies
- Implementation of the Operations
- Applications
- Conclusions
Introduction

• Question
 – How to design an export ontology to publish data on the Web so that an application *can understand the data*?
Introduction

• **Question rephrased**
 – How to design an export ontology (and an application ontology) so that *matching* the application ontology with the export ontology becomes *trivial*?
Introduction

• Suggested Answer

 – An export ontology
 (and an application ontology)
 should be "a combination of fragments
 of one or more well-known
 domain ontologies"

 so that matching the application ontology
 with the export ontology becomes trivial

 – “Standards for everything”
 • Domain ontologies
 • Object Ids
 • …

van Valckenborch, Lucas. The Tower of Babel. 1568
Oil on panel. 41 × 56 cm
Galerie de Jonckheere, Paris, France
Introduction

• New Question !!
 – What is the meaning of “a combination of fragments of one or more domain ontologies”?

van Valckenborch I, Marten. The Building of the Tower of Babel. 1595

Introduction

• **Others Questions**
 – How to compare two ontologies?
 – How to compare two versions of the same ontology?
 – How to design a mediated ontology?
Topics

• Introduction
• A Formal Framework
• Operations over Ontologies
• Implementation of the Operations
• Applications
• Conclusions
A Formal Framework

Lightweight Constraints

<table>
<thead>
<tr>
<th>Constraint Type</th>
<th>Formalization</th>
<th>Unabbreviated form</th>
<th>Informal semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Constraint</td>
<td>$\exists P \subseteq D$</td>
<td>$(\geq 1 P) \subseteq D$</td>
<td>property P has class D as domain, that is, if (a,b) is a pair in P, then a is an individual in D</td>
</tr>
<tr>
<td>Range Constraint</td>
<td>$\exists P^- \subseteq R$</td>
<td>$(\geq 1 P^-) \subseteq R$</td>
<td>property P has class R as range, that is, if (a,b) is a pair in P, then b is an individual in R</td>
</tr>
<tr>
<td>minCardinality Constraint</td>
<td>$C \subseteq (\geq k P) \text{ or } C \subseteq (\geq k P^-)$</td>
<td></td>
<td>property P or its inverse P^- maps each individual in class C to at least k distinct individuals</td>
</tr>
<tr>
<td>maxCardinality Constraint</td>
<td>$C \subseteq (\leq k P) \text{ or } C \subseteq -(\leq k+1 P) \text{ or } C \subseteq -(\leq k+1 P^-)$</td>
<td></td>
<td>property P or its inverse P^- maps each individual in class C to at most k distinct individuals</td>
</tr>
<tr>
<td>Subset Constraint</td>
<td>$E \subseteq F$</td>
<td></td>
<td>each individual in E is also in F, that is, class E denotes a subset of class F</td>
</tr>
<tr>
<td>Disjointness Constraint</td>
<td>$E \upharpoonright F$</td>
<td>$E \subseteq \neg F$</td>
<td>no individual is in both E and F, that is, classes E and F are disjoint</td>
</tr>
</tbody>
</table>
A \cap B = \emptyset \iff A \subseteq \neg B \iff B \subseteq \neg A
A Formal Framework
A Decision Procedure

• The IMPLIES procedure
 – A sound and complete procedure to test logical implication for lightweight constraints

```
IMPLIES(Σ, e ⊆ f)
input: a set Σ of unabbreviated inclusions and an unabbreviated inclusion e ⊆ f
output: “YES - Σ logically implies e ⊆ f”
         “NO - Σ does not logically imply e ⊆ f”
begin  Construct G(Σ, {e, f}), the constraint graph for Σ and {e, f};
       if the node of G(Σ, {e, f}) labeled with e is a ⊥-node, or
         the node of G(Σ, {e, f}) labeled with f is a ⊤-node, or
         there is a path in G(Σ, {e, f}) from the node labeled with e
         to the node labeled with f;
       then return “YES - Σ logically implies e ⊆ f”;
       else return “NO - Σ does not logically imply e ⊆ f”;
end
```
A \cap B = \emptyset
\iff
A \subseteq \neg B
\iff
B \subseteq \neg A
A Formal Framework
A Decision Procedure

• **Constraint graphs**
 – inspired on a 2-SAT solver

• **Completeness proof**
 – Constructs a Herbrand model
 • Uses constants to represent classes
 • Uses function symbols to represent number restrictions
 – Depends heavily on the fact that the left-hand side of a lightweight inclusion is a positive expression
Topics

• Introduction
• A Formal Framework
• Operations over Ontologies
• Implementation of the Operations
• Applications
• Conclusions
Operations over Ontologies

• Operations

 – Create new ontologies, including their constraints, out of other ontologies

 – Treat an ontology $O=(V,\Sigma)$ as a theory, i.e., a set of constraints $\tau[\Sigma]$
Operations over Ontologies

- **Useful operations:**
 - **Projection**
 - The *projection* of \(O_1 = (V_1, \Sigma_1) \) over \(W \), denoted \(\pi[W](O_1) \), returns the ontology \(O_P = (V_P, \Sigma_P) \), where \(V_P = W \) and \(\Sigma_P \) is the set of constraints in \(\tau[\Sigma_1] \) that use only classes and properties in \(W \)
 - **Deprecation**
 - The *deprecation* of \(\Psi \) from \(O_1 = (V_1, \Sigma_1) \), denoted \(\delta[\Psi](O_1) \), returns the ontology \(O_D = (V_D, \Sigma_D) \), where \(V_D = V_1 \) and \(\Sigma_D = \Sigma_1 - \Psi \)
Operations over Ontologies

– **Union**
 - The union of \(O_1 = (V_1, \Sigma_1) \) and \(O_2 = (V_2, \Sigma_2) \), denoted \(O_1 \cup O_2 \), returns the ontology \(O_U = (V_U, \Sigma_U) \), where \(V_U = V_1 \cup V_2 \) and \(\Sigma_U = \Sigma_1 \cup \Sigma_2 \)

– **Intersection**
 - The intersection of \(O_1 = (V_1, \Sigma_1) \) and \(O_2 = (V_2, \Sigma_2) \), denoted \(O_1 \cap O_2 \), returns the ontology \(O_N = (V_N, \Sigma_N) \), where \(V_N = V_1 \cap V_2 \) and \(\Sigma_N = \tau[\Sigma_1] \cap \tau[\Sigma_2] \)

– **Difference**
 - The difference of \(O_1 = (V_1, \Sigma_1) \) and \(O_2 = (V_2, \Sigma_2) \), denoted \(O_1 - O_2 \), returns the ontology \(O_F = (V_F, \Sigma_F) \), where \(V_F = V_1 \) and \(\Sigma_F = \tau[\Sigma_1] - \tau[\Sigma_2] \)
Operations over Lightweight Ontologies

• **Computing the operations**
 – Union
 • (must check if the new set of constraints implies $e \sqsubseteq \bot$, for some e)
 – Projection, Intersection
 • implemented as variants of IMPLIES
 • use the transitive closure of the constraint graphs
 – Difference
 • (To be further investigated)
Operations over Lightweight Ontologies

• Projection

Input: an ontology $O_1 = (V_1, S_1)$ and a vocabulary $W \subseteq V_1$
Output: an ontology $O_P = (W, S_P)$, where

S_P is a set of constraints tautologically equivalent to the set of constraints in $\tau[S_1]$ that use only symbols in W.

1. Generate $G(S_1)$, the constraint graph of S_1.

2. Compute the transitive closure $G^*(S_1)$ of $G(S_1)$.

3. Mark all nodes of $G^*(S_1)$ that are labeled with expressions that use only symbols in W.

4. Generate a set of constraints S_P that correspond to:
 a) Arcs of $G^*(S_1)$ connecting marked nodes; and
 b) Expressions (in W) that label the same marked node.
Operations over Lightweight Ontologies

- **Optimization**
 - **Problem:**
 - The transitive closure $G^*(S_1)$ contains redundancies!
 - **Solution:**
 - The problem is equivalent to finding the minimum equivalent graph (MEG) of a graph G, defined as the graph G' with the minimum set of edges such that the transitive closure of G and G' are equal.
 - Finding the minimum equivalent graph has a polynomial solution for acyclic graphs and is NP-hard for strongly connected graphs.
Topics

• Introduction
• A Formal Framework
• Operations over Ontologies
• Implementation of the Operations
• Applications
• Conclusions
Implementation of the Operations

• OntologyManagerTab
 – Implemented as a Protégé Plugin
 – Works with lightweight ontologies
 – Offers a friendly user interface

• Examples:
 – A projection of the FOAF Ontology
 – The intersection of FOAF and the Music Ontology
Log:
Welcome to the Ontology Manager Tab!
Developed by Romulo de Carvalho Magalhaes

Loading: /Users/romulo/Ontologias/foafFull.rdf
Ontology successfully loaded as Ontology 1
Loading: /Users/romulo/Ontologias/musiconontology.owl
Ontology successfully loaded as Ontology 2
Running Intersection over /Users/romulo/Ontologias/foafFull.rdf and /Users/romulo/Ontologias/musiconontology.owl
Intersection done!
Topics

• Introduction
• A Formal Framework
• Operations over Ontologies
• Implementation of the Operations
• Applications
• Conclusions
Applications

<table>
<thead>
<tr>
<th>Question</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to design an export ontology?</td>
<td>Projection, Union, Deprecation</td>
</tr>
<tr>
<td>How to compare two ontologies?</td>
<td>Intersection</td>
</tr>
<tr>
<td></td>
<td>Difference</td>
</tr>
<tr>
<td>How to design a mediated ontology?</td>
<td>Intersection</td>
</tr>
</tbody>
</table>
Applications
Design of an Export Ontology

• Example:
 – Goal:
 • Create a new ontology about music artists, solo artists, music groups and (record) labels
 – Strategy:
 • Design the new ontology as a projection of the Music Ontology
Applications
Design of an Export Ontology
Applications
Design of an Export Ontology

Diagram showing relationships between foaf:Person, foaf:Agent, mo:Group, mo:Organization, mo:MusicArtist, mo:SoloMusicArtist, mo:MusicGroup, and mo:Label.
Applications
Design of an Export Ontology

![Ontology Diagram]

- `foaf:Person` is disjointWith `foaf:Agent`.
- `mo:MusicArtist` memberOf `mo:Group`.
- `mo:Group` memberOf `mo:Organization`.
- `mo:SoloMusicArtist` and `mo:MusicGroup` are subclasses of `mo:MusicArtist`.
- `mo:CorporateBody` memberOf `mo:Label`.
Applications
Design of an Export Ontology
Applications

Design of an Export Ontology

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Informal specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(≥1 foaf:name) ⊑ foaf:Person</td>
<td>The domain of foaf:name is foaf:Person</td>
</tr>
<tr>
<td>(≥1 foaf:name⁻) ⊑ xsd:string</td>
<td>The range of foaf:name is xsd:string</td>
</tr>
<tr>
<td>(≥1 mo:member_of) ⊑ foaf:Person</td>
<td>The domain of mo:member_of is foaf:Person</td>
</tr>
<tr>
<td>(≥1 mo:member_of⁻) ⊑ foaf:Group</td>
<td>The range of mo:member_of is foaf:Group</td>
</tr>
<tr>
<td>mo:MusicArtist ⊑ foaf:Agent</td>
<td>mo:MusicArtist is a subset of foaf:Agent</td>
</tr>
<tr>
<td>foaf:Group ⊑ foaf:Agent</td>
<td>foaf:Group is a subset of foaf:Agent</td>
</tr>
<tr>
<td>foaf:Organization ⊑ foaf:Agent</td>
<td>foaf:Organization is a subset of foaf:Agent</td>
</tr>
<tr>
<td>mo:SoloMusicArtist ⊑ foaf:Person</td>
<td>mo:SoloMusicArtist is a subset of foaf:Person</td>
</tr>
<tr>
<td>mo:SoloMusicArtist ⊑ mo:MusicArtist</td>
<td>mo:SoloMusicArtist is a subset of mo:MusicArtist</td>
</tr>
<tr>
<td>mo:MusicGroup ⊑ mo:MusicArtist</td>
<td>mo:MusicGroup is a subset of mo:MusicArtist</td>
</tr>
<tr>
<td>mo:MusicGroup ⊑ foaf:Group</td>
<td>mo:MusicGroup is a subset of foaf:Group</td>
</tr>
<tr>
<td>mo:CorporateBody ⊑ foaf:Organization</td>
<td>mo:CorporateBody is a subset of foaf:Organization</td>
</tr>
<tr>
<td>mo:Label ⊑ mo:CorporateBody</td>
<td>mo:Label is a subset of mo:CorporateBody</td>
</tr>
<tr>
<td>foaf:Person ⊑ ¬foaf:Organization</td>
<td>foaf:Person and foaf:Organization are disjoint</td>
</tr>
</tbody>
</table>
$A \cap B = \emptyset$
iff
$A \subseteq \neg B$
iff
$B \subseteq \neg A$

Applications
Design of an Export Ontology

\[(\geq 1 \text{mo:member_of}) \]
\[(\geq 1 \text{foaf:name}) \]
\[\neg \text{mo:SoloMusicArtist} \]
\[\neg \text{foaf:Person} \]
\[\neg \text{mo:MusicArtist} \]
\[\neg \text{foaf:Agent} \]
\[\neg \text{mo:MusicGroup} \]
\[\neg \text{foaf:Organization} \]
\[\neg \text{foaf:Group} \]
\[\neg \text{mo:CorporateBody} \]
\[\neg \text{mo:Label} \]
\[\neg (\geq 1 \text{foaf:name}) \]
\[\neg \text{xsd:string} \]
\[\text{mo:Label} \]
\[\text{xsd:string} \]
\[(\geq 1 \text{mo:member_of}) \]
\[(\geq 1 \text{foaf:name}) \]
Applications
Design of an Export Ontology

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Informal specification</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mo:Label \subseteq \neg(\geq 1 \text{ foaf:name})</code></td>
<td><code>G(\Sigma_{APO})</code> has a path from the node labeled with <code>mo:Label</code> to the node labeled with <code>\neg(\geq 1 \text{ foaf:name})</code> (which indicates that a label has no name)</td>
</tr>
<tr>
<td><code>(\geq 1 \text{ foaf:name}^-) \subseteq \text{xsd:string}</code></td>
<td>The range of <code>foaf:name</code> is <code>xsd:string</code></td>
</tr>
</tbody>
</table>
| `mo:SoloMusicArtist \subseteq mo:MusicArtist`
`mo:MusicGroup \subseteq mo:MusicArtist` | `mo:SoloMusicArtist` is a subset of `mo:MusicArtist`
`mo:MusicGroup` is a subset of `mo:MusicArtist` |
| `mo:SoloMusicArtist \subseteq \neg mo:Label` | `mo:SoloMusicArtist` and `mo:Label` are disjoint |
Applications

• Example:
 – Reconstruction of a fragment of the Music Ontology
The diagram illustrates a network of classes and properties related to music entities, specifically focusing on the disjoint relationship between `foaf:Person` and `foaf:Agent`. The diagram includes:

- **foaf:Person**
- **mo:MusicArtist**
- **mo:SoloMusicArtist**
- **mo:MusicGroup**
- **mo:Group**
- **foaf:Agent**
- **mo:Organization**
- **mo:CorporateBody**
- **mo:Label**

The relationships are indicated by arrows, with specific properties such as `owl:disjointWith` and `mo:member_of`.
\[O_1 = \pi[W](\text{FOAF}) \text{ where } W = \{ \text{foaf:person, foaf:Agent, foaf:Organization} \} \]
\[O_2 = (V_2, S_2), \text{ where } V_2 = \{ \text{mo:Group, mo:MusicArtist, mo:CorporateBody, mo:SoloMusicArtist, mo:MusicGroup, mo:Label} \} \]
\[S_2 = \{ \text{mo:SoloMusicArtist} \sqsubseteq \text{mo:MusicArtist}, \text{mo:MusicGroup} \sqsubseteq \text{mo:MusicArtist}, \ldots \} \]
\[O_1 = \pi[W](\text{FOAF}) \text{ where } W = \{ \text{foaf:person, foaf:Agent, foaf:Organization} \} \]
\[O_3 = \sigma[F](\pi[W](\text{FOAF}) \cup O_2) \]

\[W = \{ \text{foaf:person, foaf:Agent, foaf:Organization} \} \]

\[O_2 = (V_2, S_2), \text{ where} \]

\[V_2 = \{ \text{mo:Group, mo:MusicArtist, mo:CorporateBody, mo:SoloMusicArtist, mo:MusicGroup, mo:Label} \} \]

\[S_2 = \{ \text{mo:SoloMusicArtist} \sqsubseteq \text{mo:MusicArtist}, \text{mo:MusicGroup} \sqsubseteq \text{mo:MusicArtist}, \ldots \} \]

\[F = \{ \text{mo:SoloMusicArtist} \sqsubseteq \text{foaf:person}, \text{mo:MusicArtist} \sqsubseteq \text{foaf:Agent}, \text{mo:Group} \sqsubseteq \text{foaf:Agent}, \text{mo:CorporateBody} \sqsubseteq \text{foaf:Organization}, \exists \text{mo:member_of} \sqsubseteq \text{foaf:person}, \exists \text{mo:member_of} \sqsubseteq \text{mo:Group} \} \]
Topics

• Introduction
• A Formal Framework
• Operations over Ontologies
• Implementation of the Operations
• Applications
• Conclusions
Conclusions

• Ontology Design
 – Design of an export ontology
 • a combination of fragments of one or more domain ontologies
 (So that matching the application ontology with the export ontology becomes trivial)

 – Operations over ontologies
 • create new ontologies, including their constraints, out of other ontologies
 • Implementation based on a structural proof procedure that works for lightweight constraints
Conclusions

• **Further Work**
 – Data Mashups as Default Theories
 • Maximally consistent data mashup \approx
 extension of the Default Theory
 • Computation of maximally consistent data mashups based on
 the *structural proof procedure, extended to assertions*
Example

Set Σ of constraints:

σ_1: $(\geq 1 \ p) \subseteq D$

σ_2: $C \subseteq (\geq 1 \ p)$

σ_3: $C \subseteq \neg(\geq 2 \ p)$

σ_4: $A \subseteq C$

σ_5: $B \subseteq C$

σ_6: $A \subseteq \neg B$

Set Δ of simple defaults:

δ_1. " $B(a) / B(a)$ "

δ_2. " $p(a,b) / p(a,b)$ "

δ_3. " $p(a,c) / p(a,c)$ "

Set A of assertions obtained by firing all defaults:

1. $B(a)$ (obtained by firing default δ_1)
2. $p(a,b)$ (obtained by firing default δ_2)
3. $p(a,c)$ (obtained by firing default δ_3)

Set S of the maximal subsets of the consequents of the defaults in Δ:

$S = \{ \{B(a), p(a,b)\}, \{B(a), p(a,c)\}, \{p(a,b), p(a,c)\} \}$
Thank You!

For this presentation and associated references, search for “marco antonio casanova puc-rio”